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The statistical mechanics is considered of any polymer network with a 
prescribed topology, in dimension d, which was introduced previously. The 
basic direct renormalization theory of the associated continuum model is 
established. It has a very simple multiplicative structure in terms of the partition 
functions of the star polymers constituting the vertices of the network. A 
calculation is made to O(~2), where d =  4 -  e, of the basic critical dimensions ~r t 
associated with any L-leg vertex (L ~> i). From this infinite series of critical 
exponents, any topology-dependent critical exponent can be derived. This is 
applied to the configuration exponent ~/e of any network f~ to O(~2), including 
L-leg star polymers. The infinite sets of contact critical exponents 0 between 
multiple points of polymers or between the cores of several star polymers are 
also deduced. As a particular case, the three exponents 00, 01, 02 calculated by 
des Cloizeaux by field-theoretic methods are recovered. The limiting exact 
logarithmic laws are derived at the upper critical dimension d =  4. The results 
are generalized to the series of topological exponents of polymer networks near 
a surface and of tricritical polymers at the O-point. Intersection properties of 
networks of random walks can be studied similarly. The above factorization 
theory of the partition function of any polymer network over its constituting 
L-vertices also applies to two dimensions, where it can be related to conformal 
invariance. The basic critical exponents aL and thus any topological polymer 
exponents are then exactly known. Principal results published elsewhere are 
recalled. 

KEY WORDS: Polymer networks; star polymers; self-avoiding walks; mul- 
tiplicative renormalization; critical exponents; e expansion; O(n) model; 
conformal invariance; two dimensions; O-solvent; surface critical behavior. 

1. I N T R O D U C T I O N  

In a previous letter, ~ I have shown that the polymer theory embodies an 
infinite series of topological (or geometrical) critical exponents, which 
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appear in a natural way when studying polymer networks of arbitrary and 
fixed topology. These exponents were calculated to first order in ~, where 
d =  4 -  e is the space dimension, and exaetly in two dimensions. The aim of 
the present paper is to describe in more detail the scaling and direct renor- 
malization theory of polymer networks, and in particular to calculate all 
geometrical exponents to second order, O(e2). 

It is well known that long polymer chains in a good solvent constitute 
a critical system. This was originally recognized through their equivalence 
to a magnetic n-component spin model, with O(n) symmetry, and in the 
limit n ~ 0 .  (2) This made it possible to obtain immediately the size and 
configuration exponents v and 7 such that 

R2,,~N 2~ (N>>I) (1.1) 

Yf "~12Uu ~-1 (N>> 1) (1.2) 

where R 2 is the averaged square end-to-end distance of a single chain of N 
monomers and Lr is its configuration number. # is the nonuniversal 
effective connectivity constant, which is model (i.e., lattice) dependent. 
In the magnetic n = 0 model, v and 7 are the universal correlation length 
and susceptibility exponents. Their Wilson Fisher e expansion in space 
dimension d =  4 -  e is then immediately obtained from the ~04 field theory 
results in the limit n = 0 (see, e.g., refs. 3 and 4; for orders up to zs see 
ref. 4) 

v = ~  l+g+--~-  + - - ~ - - 3 3 ~ ( 3 )  g + . . .  

(1.3) 
7 = l + g + - ~ -  + - - - 3 3 ~ ' ( 3 )  g + - . -  

Direct renormalization methods (not resorting to field theory) were later 
devised specifically for polymers, either in a good solvent (5'6) or in a 
O-solvent. (7) However, in general, these studies concentrate on the usual 
critical exponents v, 7, the crossover exponent co, (3'5) and the various 
universal scaling functions, which are obtained only at first order in e. (8) 

A noticeable exception is the calculation (9) at O(e 2) by field-theoretic 
methods of contact exponents 00, 01, 02. These exponents describe the 
short-distance scaling behavior of the probability P(r) that two fixed points 
of a linear polymer chain approach each other at a distance r. The 00, 01, 
02 correspond, respectively, to the contact of the two endpoints of a chain 
[0o = (7 - 1)/v], (9) of one end with an interior point of the chain (01), and 
of two interior points (02). 01 and 02 are new geometrical exponents, which 
are independent of v and 7. 



Polymer Networks 583 

But many more questions can be asked in polymer physics. First, one 
can consider a single star polymer ~1"1~ 5ec with L legs of N monomers each, 
N being large (Fig. 1 ). Then its number of self-avoiding configurations is a 
generalization of (1.2), 

~ ( ~ L ) ~ L N N  yL-1 (N>> 1) (1.4) 

where # is the same local connectivity constant as in (1.2) for a single 
chain. The single-chain case corresponds to L = 1, and 71 -= Y. For L = 2 
one has a two-leg star, which is still a single linear polymer, hence 72 = 7" 
But for L >~ 3, the 7L constitute a new set of independent critical exponents, 
which are to be determined. 

Also, one can wonder about the probability P that the cores of two 
star polymers with L and L' branches approach each other at a distance r 
(Fig. 1). At short distance the cores repell each other and the probability 
vanishes like 

P(r) r'Xo rOLL' (1.5) 

where 0L.L' is a new universal contact exponent depending only on L and 
L', and on the space dimension d. 

So a new physics begins which is related to high-order vertices, (m) to 
star polymers, (~~ or to high-contact exponents, (H) or also to topological 
networks. (~'~2) For  instance, the contact exponents 01, 02 described above 
embody, respectively, the anomalous dimensions of L = 3  and L = 4  
vertices. (9,H) All the questions above can be answered by unifying all the 
polymer theory in terms of a single infinite series of independent and 

f 

L 

a b 

Fig. 1. (a) An L-leg uniform star polymer with equal arms of length S. Its number of 
configurations scales like ~(SeL)~#LSs~L  ~ for S--* oo, where 7L is a universal exponent 
depending only on L (and d). (b) Two L and L' stars approaching each other at a relative dis- 
tance r, the probability scaling like P L . z , ( r ) ~ r ~  L for r ~ 0 ,  where OL, L' is universal, 
depending only on L, L' (and d). 
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universal critical exponents ~1'5) aL indexed by an integer L~> 1. They 
correspond to the new anomalous critical dimensions ~1'12) associated with 
the physical branching points of L polymers tied together (Fig. 2). In other 
words, only vertices matter in polymer theory, and one can (almost) forget 
about the polymer lines connecting them! As we shall see, each core of a 
star polymer has its own dimension depending only on L, the number of 
legs of the L-vertex. L = 1 corresponds to the single e x t r e m i t y  of a linear 
polymer and is associated with the usual magnetic exponent q (or 7), L = 2 
corresponds to a two-leg vertex, hence to a single monomer inside a 
polymer chain, and its anomalous dimension is simply associated with the 
fractal dimension exponent v. For  L/> 3, the aL are new critical exponents. 

All geometrical critical exponents like 7L in (1.4) or OL, L' in (1.5) can 
be expressed in terms of the aL. For  example, the "magnetic" enhancement 
exponent 7L for a star reads simply ~1) 

7L -- 1 = aL + L a l  (1.6) 

This is very easy to understand: the core contributes an exponent aL while 
the L = 1 extremities in number L contribute each a a~. In a similar way, 
the two-star contact exponent 0L, L' in (1.5) reads <~1'13) 

OL.L" = 1 (aL + ~rL'_ a t +  L') (1.7) 
v 

which is entirely reminiscent of an operator product expansion (OPE) in 
field theory. Indeed, aL and aL, are the exponents of the two cores, while 
aL+L, is that of the new core made by the fusion of the two stars upon 
contact (Fig. 2). From the "vertex structure" of the theory, one can extract 
new scaling relations between exponents. For  instance, from (1.6) and (1.7) 
one can eliminate the ~r L and get 

1 
0L, L' =-- (~L + 7L ' - -~L+~ ' -  1) (1.8) 

v 

OL 

~ O'L + O'L' - O'L + L' 

o1 al 

Fig. 2. Decomposition of universal exponents YL and OL, L, of Fig. 1 into their irreducible 
vertex parts {ai}: 7L-- 1 = a L + L a l ,  vOL, L, =aL+aL, - -aL+L, .  
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Note that the des Cloizeaux contact exponents 0~, 02 of a single chain ~ 
read in our formalism 01 = 0L= l,L'-2 and 02 = 0L-2,u=2 (Fig. 3). Hence we 
find 

0~ = (27 - 73 - 1 )Iv 
(1.9) 

02 = (27 -- 74 - 1)/v 

relations which were also guessed in ref. 14. 
How does all this fit in the usual field-theoretic description of critical 

phenomena(15>? 
The scaling dimensions ~L corresp ond(u actually in (~02) 20(n)-field 

theory to the anomalous dimensions of successive powers of the field q~L. 
Usually, one is interested, in the statistical mechanics of critical points, 
only in the scaling dimensions of the first powers ~0 and ~o 2, which lead the 
usual exponents ~ and v, ~33 i.e., also to 7 = ( 2 -  q)v. 

But there exist also higher independent scaling dimensions associated 
with ~pL, leading to new, higher critical exponents, but these operators are 
not so much considered, perhaps both because they have no immediate 
physical interpretation, and because their field-theoretic renormalization 
for high L's is not simple to perform. In polymer physics (which 
corresponds to the particular case n--* 0) the situation is quite different. 
These exponents have an immediate geometrical meaning, and furthermore 
they are relatively easily accessible by the technique of direct renormal- 
ization, specially tailored for polymers/5) 

Let us now return to polymers. From the basic exponents aL, one can 
now construct the scaling theory of any polymer networkJ ~) 

Consider indeed a branched polymer ff (Fig. 4) of arbitrary but fixed 
topology, made of JV" chains of equal lengths N, tied together at vertices of 

m ~ J '  

I ~ I I 
I I I I 

L-- L = 2 

I 
! �9 

! / 
t / 
�9 I 

Fig. 3. Usual contact exponents 0~, 02 inside a chain. They depend only on the vertices upon 
contact and not on the connectivity of the chain. They are star contact exponents 0Lu (see 
Fig. 1), namely those of l-leg and 2-leg stars: 0~ -= 01,2; and of two 2qeg stars: 02 -= 02,2. 
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L=I  
L=3 

L 

Fig. 4. A polymer network ~ of arbitrary but fixed topology, specified by the numbers n r of 
L-leg vertices inside 4: Here nl = 1, n3 = 4, n 4 = 1 ,  n 5 = 1. The configuration exponent 7e is the 
sum of all the contributions tr L of the physical L-leg vertices 7e-1  = -vdLf + ~L~InraL, 
where s 1 +�89 is the Euler number of loops of graph cS. It can thus also be 
written as 7~-  1 = -vd+ Y~L>~InLAL with AL = ~rL- vd(L--2)/2. 

functionalities L (L >~ 1) and in number  nL, and ask about  the asymptot ic  
number  of self-avoiding configurations ~ e  of f#. The answer is/1) 

~7~ ~#~NNV~-I (N>> 1) (1.10) 

where 7~ is the topology-dependent  critical exponent:  

7 ~ - l = - v d ~ a +  ~ nLar (1.11) 
L~>I 

where LP is the number  of physical loops in the polymer network f#. In 
(1.11) one observes the fundamental  result that  each L-vertex contributes 
by its scaling dimension ~r L as many  times nL it appears in fr Note  also 
that L = 1 corresponds to the free extremities of the network. A necessary 
requirement of the theory is that  (1) 

a 2 - 0  (1.12) 

since L = 2 corresponds to the two-leg vertices, i.e., to any "monomer"  or 
any point  in the network,  which forms a cont inuum set, hence n 2 - - =  o0. We 
shall see that this is indeed always the case. 

All the fundamental  polymer scaling theory described here applies in 
any dimension d. Above four dimensions ( d >  4) the self-avoidance effects 
are irrelevant. Hence all critical exponents are trivial, and we have simply 

a L = 0 ,  VL~> 1, d > 4  (1.13) 

When d~<4, d = 4 - e ,  the a/~ can be calculated analytically via the 
e_expansion t 1,5) 

crL = (2 - L)Le/16 + O(e 2) (1.14) 
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The theory applies equally well for self-avoiding walks in two dimensions. 
We know there the infinite set of exact values 

aL= ( 2 - L ) ( 9 L + 2 ) / 6 4 ,  L>~ 1 (1.15) 

derived (1) from conformal invariance (12) or Coulomb-gas (16'17) results. 
Note also that in two dimensions a very interesting case is that of 

dense polymers, (13"is 21~ which fill a finite fraction of the (infinite) lattice. 
They correspond to the critical low-temperature phase of the O(n) 
model (13'18'19) for n--* 0, or to the Q-state Potts model at its critical point 
for Q ~ 0, (20'21) Then the fundamental cr L exponents read (13'18~ 

a L =  - - ( L 2 -  4)/32 (L~> 1) (1.16) 

The aim of the present paper is twofold. First, to explain the roots of the 
decomposition in terms of vertex operators for any scaling function for 
polymers. In other words, I want to unify and derive in a simple way the 
results (1.4)-(1.11) in terms of the vertex exponents aL, and this paper can 
be seen as the detailed expansion of ref. 1. A second aim is to calculate 
these vertex exponents aL in second order in e. One finds 

a L = (~/8)(2 - L)L/2 + (e/8) 2 L(L  - 2)(8L - 21 )/8 + O(e 3) (1.17) 

This leads to the practical knowledge of an infinite series of geometrical 
exponents for polymers to order O(e2). 

I shall also give the values to O(e) of the a s for surface critical 
phenomena in the case of (branched) polymers near a strongly repelling 
interface (22'23~ (i.e., the ordinary surface transition). The same vertex theory 
applies also to the case of tricritical polymers at the O-point. (24 26) I give 
here the analogous vertex dimensions a ~ to first order in e = 3 -  d, below 
the upper tricritical dimension d = 3. 

Note that the idea of introducing exponents for the vertices higher 
than 2 appeared in ref. 5 but was not exploited there. Des Cloizeaux and 
Jannink (5) used it to calculate contact exponents to O(~). In two dimen- 
sions, it was studied numerically in ref. 12 for some peculiar "watermelon" 
topology ~1) and by the Coulomb-gas methodJ 16,17) More generally, the 
formalism I shall describe here applies integrally in dimension 2, where it is 
reinforced by powerful conformal invariance theory (27) and Coulomb-gas 
techniques. (16) See refs. 1, 12, 13, 16-22, 26, and 27 for polymers in two 
dimensions. There all the geometrical exponents are known exactly. 

Note finally that the study I describe here for the vertex theory of 
topological polymers, i.e., dilute self-avoiding walks, is very similar to the 
scaling theory of the intersections of random walks given in a previous 
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study. (2s) There also, the exponents ac corresponding to the noncrossing 
probability of L independent random walks were calculated to order O(e2). 

This paper is organized as follows. 
In Section 2, I describe the formalism needed for calculating the par- 

tition function of any polymer network, in the framework of the standard 
Edwards continuum model for polymers in d dimensions. The perturbative 
rules are given. The relationship to correlation functions in the field theory 
or O(n) model (for n = 0) is explained in the simple and basic case of the 
watermelon topology (L polymer chains tied together at their extremities). 
This case is also used to illustrate the (infrared) divergences occurring in 
perturbation theory. 

In Section 3, the renormalization principles for treating any network 
topology are given. I work in the good solvent case [i.e., near the critical 
point of the O(n = 0) model], but the principles can be extended to any 
multicritical point for polymers (Section 7 and ref. 28). It is shown that the 
polymer network partition functions are renormalized by factorization of 
the critical divergences over the physical vertices of the network. (ll As a 
consequence, critical exponents for d <  4 are sums of contributions of the 
vertices as in (1.11). A general scaling theory of networks is thus 
established. The logarithmic behavior in d = 4 is also given. 

In Section 4, the same scaling theory of polymer networks, derived in 
Section 3 from the direct renormalization method for polymers, (5) is now 
rederived in field theory, by considering fully polydisperse networks. This 
scaling method was introduced in ref. 22 together with conformal 
invariance studies. The polydisperse network partition functions appear in 
the field theory as correlators of composite operators ~b L associated with 
the L-leg vertices. 

In Section 5 the basic vertex exponents aL, (1.17), of the L-leg vertices 
or the associated scaling dimensions XL of the field operators ~b L are 
calculated to O(e 2) in d =  4 -  e dimensions. For this, I use the direct renor- 
malization method and calculate directly the star partition functions (1.4) 
and their critical exponent 7L" All other exponents follow, such as the 
contact exponents (1.8). I also illustrate the scaling theory by giving all the 
corresponding values in two dimensions, which are exactly known. 

Section 6 introduces the new surface effects for polymers in semi- 
infinite geometry. The networks are grafted to a Dirichlet surface (ordinary 
surface transition). I first describe the Brownian case where phantom 
networks approach the surface. In d <  4, in a good solvent, new anomalous 
dimensions a s appear for each L-leg vertex grafted onto the surface. I give 
the associated direct surface renormalization theory for any network. The 
configuration exponent (2z) ~s of any network near the surface is then given 
as a sum over the contributions aL of bulk vertices and ~s of surface ones, 
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generalizing (1.11). Infinities of exact scaling relations between various 
network surface exponents can be derived. In particular, I give a 
generalization of Barber's scaling law to L-leg vertices. The set of basic 
surface exponents a s, L/> 1, is calculated to O(~) in d =  4 - ~ ,  by a direct 
evaluation of the star surface partition functions. All other surface 
exponents can be derived from them. The corresponding exact values in 2D 
are given. In d =  4 the surface logarithmic corrections are also calculated. 

In Section 7, the above scaling theory is generalized to polymer 
networks in a O-solvent (tricritical case), as well as its direct renormal- 
ization. At the upper tricritical dimension d--3 ,  the logarithmic correction 
is thus calculated for an arbitrary polymer network. For instance, the 
partition function of an L-arm star scales at the O-point exactly as 

~(SPL) ~ (ln N) L(L I)(L-2)/132 

yielding new logarithmic effects for L/> 3. 
Finally, in Section 8, the predictions of the hyperscaling theory of 

polymer networks are compared to existing numerical simulations. The 
best test is given by the 2D case, where all theoretical results are expected 
to be exact. The agreement with the numerical estimates gathered through 
the literature for networks such as stars, H-comb, etc., in the bulk, or near 
surfaces and wedges, is excellent. 

2. C O N T I N U U M  M O D E L  OF P O L Y M E R  N E T W O R K S  

2.1. Part i t ion Functions 

We start by considering sV" independent linear polymer chains a = 
1 ..... ~V, tied together at some vertices and forming a connected network (1) 
(q. The positions in space R d of the vertices are not fixed, but the topology 
of (4, though arbitrary, is fixed. It is characterized by the set of numbers of 
times n L the vertices of L legs appear in (6: 

nL = # of L-vertices of ~, L ~> 1 

For  L = 1, nl is the number of free ends of (6 floating in the solvent. Of 
course, the set {nL} does not completely characterize the topology of (r 
two different networks may have the same sets of vertex numbers {nL}. 
However, this set is sufficient for describing the critical properties of (r The 
probability weight describing the configurations of the sg  chains is taken 
as the standard Edwards' continuum action (29) 
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~ { r . }  = e x p ( - d { r ~ } )  

S ( d r a ( S ) ~  2 
~4{ra} = 2 3 = 1  ds (2.1) 

1XYfo f; + F. Y. d, a,'6"(ro(s)-ro.(s')) 
a = l a ' = l  

where ra(s) is the configuration of the a chain in space, and where b (>0 )  
is the excluded volume coefficient. Now, the partition function of the 
connected network N reads formally as a functional integral 

~(f#)  = f a{ra} Ny{r ,}  d{r} P0{r} (2.2) 
a = l  

where 6a[f#] is a symbolic notation for all the 6 distributions necessary for 
building the network f#. In the denominator of (2.2), P0{r} is the Brownian 
weight for a single chain, obtained from (2.1) for JV" = 1 and b = 0 ,  hence 
Y'(fr is normalized by the total number of configurations of Y Brownian 
paths, with their origin fixed. In this way, ~(~4) admits a well-defined finite 
continuum limit. (1'5) 

The 6a[f#] distribution of the connected networks f# reads explicitly 

f [IldaR, (] 
i = 1  i = 1  

x [  l--[ 6a(ra(O)-",) l-] 6a( r~ ' (S) -Ri ) ]  (2.3) 
a~ L+(i) a '~L- ( i )  

where i =  1,..., 7U denotes the set of the V vertices of f#, and where L+(i) is 
the set of oriented polymer lines {a} leaving the vertex i, and L - ( i )  the set 
of polymer lines arriving at i (Fig. 4). The natural orientation chosen on 
each polymer chain is that of its abscissa s e [0, S]. [The distinction L + (i), 
L - ( i )  is purely a matter of notation since we have to distinguish ra(0) and 
r~(S) on each chain]. Note that in (2.3) we integrate over the position of 
~ - 1  vertices only, in order to cancel the translational invariance 
infinite-volume factor. 

2.2. Cutoff  and Dimensional Regularizations 

It must be realized that interaction integrals like the b ~ 6a(r(s) - 
r(s'))dsds' in Eq. (2.1) yield divergent contributions when s=s'/5'6'3~ 
So one has to regularize the theory and a physically appealing way is to 
introduce a short-distance ultraviolet cutoff "area ''(5) such that in any 
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interaction integral I s - s ' l~so ,  Then Y'(N), (2.2), really depends on 
variables b, S, so, d. In the limit so ~ 0, and for d <  4, it is possible to 
factorize out the So dependenceJ 5> One has 

Lr (~, b, S, So, d )=exp[JV(S /so)  C(zo)3 ~(fq, b, S, d)ldi . . . .  g. (2.4) 
s 0 ~ 0  

where z o is the cutoff-dependent and dimensionless interaction parameter ~5) 

Zo = (2~ t ) -~ /2  bs~ ~/~ 

and C(zo) is a regular function ~5) calculable as a power series of Zo. C(zo) is 
independent of fr and can be seen as a shift in the free energy per 
monomer, X S / s o  being the "number" of monomers in our continuous 
model. On the right-hand side of (2.4), , ~ ' a ( ~ ) [ d i  . . . .  g. is the dimensionally 
regularized (3~ partition function, obtained by continuing analytically the 
polymer model, free of ultraviolet divergences for d <  2, to values d >  2. 
This partition function will depend on S and on the dimensionless inter- 
action parameter ~5'32) 

Z = (27Z) d/2 bS2-d/2 (2.5) 

and is the mathematically attractive object. Note that in our cutoff 
continuum model the effective connectivity constant p of (1.10) is simply 
# = e  c(z~ Hence we expect the partition function in dimensional 
regularization to scale like 

Y'(fq, b, S, d )  [dim.reg" ~ S ~ - 1 (S --' oo  ) (2.6) 

i.e., in dim.reg, p---1. From now on we work exclusively in dimensional 
regularization. 

2.3. Brownian Part i t ion Function ~ B ( ~ j )  

To investigate the structure of ~(fr  we first need to perform its naive 
dimensional analysis. The number of effective 6 interactions in (2.3) is 

A = ~ L(i) - (~//- - 1 ) (2.7) 
i = 1  

where L(i) = L § (i) + L - ( i )  is the total number of polymer lines attached at 
vertex i. The subtraction of q / - -  1 in (2.7) amounts to the integration over 
the ~ -  1 positions of the vertices. For  the polymer network N described 
by the set {nL} of numbers of vertices of type L we can rewrite (2.7) as 

A =  ~ n z ( L - 1 ) + l  (2.8) 
L>~I 
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The canonical dimension of 6d[-fr (2.3), is then 

~a[fr ~ S-d~/2 (2.10) 

where S is the Brownian area (5~ of the chain, homogeneous to a length 
squared [see (2.1)]. Finally, the normalized partition function ~ ( ~ ) ,  (2.2), 
scales necessarily like (in dim.reg.) 

~(f#) = (27~S)(o,~- a)a/2 Z(f#, z, d) (2.11) 

where Z(f#, z, d) is a dimensionless function of the dimensionless interaction 
parameter z. 

It will be useful to know the topological relations in a network c~ 
made of Jff chains, 

2J f f=  ~ LnL (2.12) 
L~>I 

1 
5 ~  Z ~ ( L - 2 ) n c + l  (2.13) 

L~>I 

where 5r is the Euler number of physically independent loops in f# (Fig. 4). 
With these, the canonical dimension of ~(f#), (2.11), is, in S units, 

= (~/" - d )d/2 = - ~ d / 2  

and 

~ ( ~ )  = (2~S) - ~ / 2  Z(~r z, d) (2.14) 

Note that for a pure Brownian network (b = 0) the functional integral (2.2) 
can be performed exactly as (21'28) 

~ ( n ( c f f )  = (27rS)-~a/2 (det C~/{a}) a/2 (2.15) 

where C~ is the connection matr ix  (21~ of the graph ~4. It is a ~ x ~ matrix, 
whose elements Cab are labeled by the vertices of ~ and are defined as 

if a 4: b Cab = -- # lines joining a to b 

if a = b  C a , = -  ~ Cab 
b~a (2.16) 

= # lines attached to a by one 
(and only one) extremity 

~U= ~ nL (2.9) 
L>~I 
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This matrix has a zero mode, ~2~) and hence det C~ - 0. In (2.15), det C~/~a} 
is then the minor of C~ with respect to any vertex a of ~ (which is 
independent of a). 

Formula (2.15) hence fully confirms the result (2.14) of dimensional 
analysis. We can furthermore make precise the Brownian normalization of 
Z for z = 0: 

ZB(~, d) = Z(~r z = 0, d) = (det C~/{a}) -a/2 (2.17) 

Now the problem has been reduced to the analysis of dimensionless 
Z(fr z, d). Its scaling behavior will be found as usual in direct polymer 
theory (s'l) by perturbation expansion followed by renormalization. Now, 
the dimensionally regularized partition function Z(fr z, d), when expanded 
in powers of z, develops poles at some values of the dimension d, for 
2~<d~<4. These polar dimensions are well known in the (q~2)2 field 
theory (31~ or in polymer theory(33): 

d(p)=4-2/p,  p e N *  

They include d = 2, d = 3, and finally d(oo)= 4, which is the upper critical 
dimension of the theory. So we set d = 4 - e ,  and Z(fr z, 4 - ~ )  has the 
double Laurent-Taylor series expansion 

Z(~,  z, d) 
ZB(f~,d) = 1 +  ~ a,(8)z", d = 4 - ~  

~>1 (2.18) 
0~n n 0~n, 1 an(8) = ~ +  ~ . . . .  1 + " + ~ + ~ . , o ( ~ )  

where cr 0 is regular when ~ ~ 0. The coefficients a~(e) are essential (34'35) 
and are found by perturbation expansion. 

2.4. Perturbat ion Expansion 

The perturbative rules for calculating any partition function 2F(fr can 
be obtained by generalizing those of ref. 5. One expands the weight (2.1) in 
powers of the interaction b, or equivalently of the dimensionless parameter 
z, (2.5). Each cS interaction is Fourier transformed into 

=(2zt) ~ f d ~ q e x p { i q  �9 [ ra(s)-ra , (s ' ) ]  } (2.19) 6a[ra(s)-ra,(s')] 

and the averages with independent Brownian weights of the expanded 
terms are easily performed with the simple Green function for each chain a: 

(exp{iq.  [ra(s)-ra,(s')]})o=exp(-lq 2 Is-s']) (2.20) 
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In our case, the situation is slightly complicated by the fact that there are 
additional 3d[f#] distributions, (2.3), building the connections of the 
network f#. This manifests itself in the fact that the pure Brownian partition 
function (2.15) is not trivial. These 6d[f9] distributions are also Fourier 
transformed as in (2.19). The diagrammatic rules for calculating ~((9) are 
then the following. 

1. Diagrams are made of Y continuous chains building the network 
f# at some prescribed Lqeg vertices. This "bare" topology of f# is conserved 
for all diagrams of the perturbation expansion of Y'(f#) in powers of b. 
Then dotted lines joining two interacting points on the various chains of the 
network are introduced, with a factor - b  for each interaction. 

2. A set of independent loops is selected in each interaction diagram, 
which involve continuous polymer chains and interaction dotted lines. 
Some of these loops can be made of polymers lines only and are thus con- 
stitutive loops of the "bare" Gaussian network f# itself. An independent 
momentum q flows along each loop, with integration measure 

f dd q 
(2~) d 

[see (2.19)]. 

3. Along each segment of length s of a chain, determined by two 
successive interaction points along the same chain, one evaluates the total 
momentum flowing along it, which is the algebraic sum 5-', q of the 
momenta of all the independent loops to which the segment belongs. This 
segment contributes then a factor exp[- �89 q)2 S'] to the integrand. 

4. One integrates over all independent momenta, and all positions of 
interaction points which preserve the topology of interactions of the 
diagram. 

5. One sums over all possible topologies of the interaction lines, 
keeping the constitutive topology of ~ itself fixed. 

I give an example on a nontrivial diagram which will be useful later. 

2.5. Watermelon  Network  

Consider a graph fq ("watermelon network") made of L polymer lines 
of equal length S tied together at their extremities X and Y (Fig. 5). This 
kind of configuration plays a central role (~) in two dimensions, where it can 
be analyzed ~176 by Coulomb-gas and conformal invariance 
methods, When the lengths of the chains fluctuate, it corresponds to 
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L 

a b c 

Fig. 5. The watermelon network ~ of L polymer lines tied together, and the first Feynman 
diagrams contributing to its partition function ~((~KL) [Eqs. (2.24), (2.26), (2.27)]. 

multispin (totally connected) correlation functions in the associated O(n) 
model (n --* 0). 

2.5.1.  P a r t i t i o n  F u n c t i o n .  So let us for a while consider a 
polydisperse network and take L chains of lengths $1 ..... SL. The diagrams 
contributing to ~(L(S~ ..... SL, b, d) to first order in excluded volume b are 
given in Fig. 5. 

First the Brownian value ~,B can be calculated via the above rules. It 
reads in Fourier representation 

~LB(S1 ..... SL, d)= I [-I ddki • (2rc) dad L 1 , 

We rewrite it in direct space as 

~ { S i }  = f  daX FI G(X, &) (2.21) 
i = 1  

where 

dak / ,  

G(X, S) -= j (-2~)a exp( - k2S/2 - ik .  X) 

= (21tS)-a/2 exp( - X2/2S) (2.22) 
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Note that G(X, S) is simply the Brownian probability distribution 

G(X, S )=  (6 ` / ( r (S ) - r (0 ) -X) )o  (2.23) 

So we find for (2.21) 

~BL{s,} = (27c8,) -`//2 d`/Xexp - 
i=1 i=1 

= (2=Si) -`//2 (2=) ̀ //2 ~/ j  (2.24) 
i=1 i 1 

In the monodisperse case it reads 

~(~(L x S) = (2=S) -~L- 1)̀ //2 L `//2 (2.25) 

This is in agreement with the general formula (2.15), since here the connec- 
tivity matrix is simply 

and its minors with respect to the two vertices are L. 
Now let us consider the two interaction diagrams of Figs. 5b and 5c, 

with contributions 

, = 1 ( - ~ )  a(2=)a6d i=,2 ki i=2~exp - 5  iSi) 

d /̀k (_ ',2s) fSoldS(S 1 s) exp [ -  ~ x - j ~ exp ~ 

j 2 = _ b f ~ i  d` /k ,  ( c ) l k l e x p (  lk~s~ i=l (--~) d(27"~)d(~`/ i~=l k` ,=3 - 2  / 

fddk  fS1 $2 [ lk2(S 1 1 ] 
x j(2=)`/2 ~ dSlfo ds2exp - ~  - s l ) - ~ ( k l w k ) 2 S l  

[ l k2(S2_s2 ) 1 ] x exp - ~ - ~  (k2-k)2s2 

The momentum integrations are easy to perform via Gaussian integration 
formulas. One finds 

L 
Jl  = -b(2~) `//2 l-I (2=s,) `//2 

i=2 

x fSIds(S1--S)I d/2s-d/2( Sll~S'~- ~" S,) /̀/2 (2.26, 
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and 

J2 = -b(27r) -a/2 dsl ds2 (s I -]-$2) -d/2 (27~) -(L-1)d/2 I~ (S j )  -d/2 
j>_-3 

X S1 q- $2 - Sl - $2 ~- Z S1 $2 
j>- 3 s ~-~s 2 / J 

(2.27) 

I have given these formulas to show on a specific example the kind of 
perturbation theory and Feynman-Schwinger type integrals one can expect 
for these interacting networks with nontrivial topology. Of course, for the 
L-chains of the peculiar watermelon network ~/U c one has to add all the 
contributions obtained from (2.26) and (2.27) by permuting S1 with the Sj 
and $1, $2 with any pair (Si, Sj): 

& { S j }  = ~ { S j }  + Z J~(S,) + ~ J2(Si, Sj) (2.28) 
i i,j 

Let us now be more specific and consider the monodisperse case where 
all the chains have the same length: 

Sj = S Vj = 1,..., L (2.29) 

Then we find the perturbative expansion 

~1 = - z ( 2 g S ) - ( L -  1)d/2 ld (2.30) 

Ia = [ l + ( L - 1 ) ( 1 - x ) ] - a / 2 ( 1 - x ) x  d/2dx (2.30a) 

z = (2re) a/2 bS2-d/2 

and 

J2 = -z (2~S)-~z ' -  1)a/2 I'a (2.31) 

I'a= dXl dx2 [ ( x ~ + x 2 ) L - ( x ~ + x 2 ) 2 - ( L - 2 ) ( x ~ + x 2 2 ) ]  -a/2 (2.31a) 

To first order in b or z, the perturbation expansion of the partition function 
of the watermelon network ~ is thus 

o~e(~) - ~/.(L x S) = (2rcS)-d~L--1 )/2 L-a/2 + L~ffl + �89 - 1) J2 

= (2zcS) -a~L- 1)/2 [L-d~2  _ zLIa-- z �89 -- t ) I'a] 

822/54/3-4-3 
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and this illustrates perfectly the structure announced in (2.14), (2.15). To 
see the occurrence of divergences, one has to perform the Laurent expan- 
sion of integrals Ia [(2.30a)] and I~ [-(2.31a)] for d =  4 -  e near e = 0. The 
dominant polar 1/e terms are easy to get. Since later we shall calculate 
universal amplitude ratios, we shall need the subdominant terms. They 
require some algebra. We finally find the contributions of the diagrams of 
Figs. 5b and 5c: 

~ (L - 2) + 2 - 3L + (L - 2) In L (2.32) 

I ' d = L - a / 2 2 ( ! + l + l n L )  (2.33) 

and 

~(~WL)= (2~S) d(L- l)/2 L-d/2 

x { 1 - - z [ ! ( L 2 - 2 ) + 2 - 4 L + L 2 + ( L R - 2 ) l n L ] + O ( z 2 ) }  

(2.34) 

Recall that these expressions are dimensionally regularized ones, and (2.34) 
illustrates the general polar structure mentioned in (2.18). 

2.6. Cor re la t ion  Funct ions  

It is interesting to analyze the correlation function of the extremities of 
a self-avoiding watermelon network ~ .  For this, I reintroduce fluctuating 
lengths $1 ..... SL for the L polymer lines of the watermelon, and define their 
restricted partition function 

L 

~fL(S~,..., SL, X, Y ) = f  d{ra} IJ  6~(r~(0) - x )  6a(ru(S)- Y) ~L{ra} 
a = l  

(; )_L 
• v d r}  o r/  Er(O)l (2.35) 

where the extremities of the network are at X and Y. Let us go to a 
"magnetic" correlation function in the O(n) model (n ~ 0 )  by summing 
over the fluctuating lengths and define 

GL(X -- Y, T) - dS~ e -  r(s~ + ... + sL)~L(S 1 ..... SL, X, Y) (2.36) 
a = l  



Polymer Networks 599 

where T is the "temperature" of the O(n) model. We can invert this Laplace 
transform and get the polydisperse partition function 

o~ .. dSL 3 [ S -  ($1 + . . .  + SL)] ~L(S~ SL; X, Y) 

1 
f[ + ~~ dT eTSG L(X-  Y, T) (2.37) 

2rci - i~ 

where the contour of integration lies on the right-hand side of the 
singularities of the integrand. The total polydisperse partition function is 
defined as 

~gp~ ~" a = l  daa~ S - a  1 Sa ~fL({aa}) 

- 2 ! i f  dT eVS f daY G L(X-  Y' T) (2.38) 

The monodisperse partition function of the watermelon network is related (1) 
to the polydisperse one by the simple dimensional analysis of the first line 
of Eq. (2.38), 

~ (  ~L) ~ ~L( S ..... S) ~ o~p~ g-(L-1) (2.39) 

Now, the multiple correlation function GL(X--Y, T) in the O(n) 
model (n--+ 0) is a multiple spin correlation function, {12a3'16'2~ but where 
only totally connected diagrams appear. The O(n) model has a critical point 
at T = Tc such that # = e r~ is the effective connectivity constant of the SAW 
for n-+ 0, and in dimensional regularization /~ = 1, Tc =0. At the critical 
point Tc, the mean length ( Z a  Sa > is infinite. There one expects the critical 
correlation function GL of the L lines to decay algebraically as 

GL(X-- Y, Tc) ~ IX- YI L(d 2~ 2~)_ (2.40) 

The exponent L(d -2 )  is the Brownian value of the correlation exponent, 
as can be seen from Eqs. (2.21) and (2.22), while x}_ is the anomalous part 
generated by self-avoidance. It is also convenient to define the total scaling 
dimension XL of an L-vertex such that 

with 

GL(X -- Y, Tc) = I X -  Y[-z~, (2.40a) 

L 
xL = ~ ( d -  2) + x~. (2.40b) 
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Note that in two dimensions 

xL = x~ (2D) (2.40c) 

For  the "phantom" Brownian watermelon network, we have 

L 

~ ( { S i ) ,  X, Y ) =  1-[ ((2~Si) d/2exp[--(X--Y)2/2Si]} (2.41) 
i = l  

For the free chains (free field theory) the critical temperature is Tc=0.  
Hence the Brownian critical correlation function (2.36) factorizes by 
integrating (2.41) into 

G~(X- Y, Tc=O)= {f ~ dS(2~S) a/2 exp[-(X- Y)2/2S]} L 

= [ ( 2 ~ )  a/22a/2-1F(d/2-1)]L[X-Ya c~a 2) (2.42) 

which is the result (2.40) for x)~ = 0. 
When the watermelon network is self-avoiding, the critical correlation 

function (2.40) develops an anomalous dimension xL depending on the 
number of lines L of the network. Note that for L = 1, G1 is just the usual 
spin-spin correlation function of the associated O(n) model and thus 

x' 1 = q/2 

where q is the usual magnetic exponent. When we are away from the 
critical point, it is very natural to assume a further scaling behavior of GL 
in terms of the ratio ]X-Y] /~ ,  where ~=  I T - T c ]  ~ is the correlation 
length. Hence we set ~3) 

G L ( X -  Y, T ) =  IX-VI-LCa-2)-2~2 FL(IX--YI I T -  T~[ v) 
= I X - Y 1 - 2 ~  FL (2.43) 

where FL is some universal function, with FL(0) finite. This will be used 
later. 

2.7. A Remark on Topological  Constraints 

It is important to note that we do not consider here entanglement 
problems/36-41) Specific topological constraints arise due to the 
impossibility for real polymer chains to cross each other or themselves. For 
instance, for a L = 3 watermelon network, various knotted or nonknotted 
configurations are possible in three dimensions (Fig. 6). In a Gaussian for- 
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Fig. 6. A knotted configuration of the watermelon. Although it is topologically non- 
equivalent to the simple configuration of Fig. 5, it is enumerated in ~(~L) for d = 3. 

mula like (2.15) for the Brownian networks, or in perturbative formulas 
like (2.34), we allow the network to explore all these nonequivalent knot 
topologies. In this paper only the topology of the branchings is fixed, while 
that of the knots is not. So, our networks, though self-avoiding in the 
b ~ oe limit, are in a sense "phantom" since their Gibbs states fall into 
several nonequivalent classes with respect to knot topology. It would be 
quite difficult to consider directly networks in three dimensions, and to 
implement both excluded volume and entanglement specifications (see, 
however, the results for the rod and single-chain problem in 3D, (39) in 
d =  4 - e ,  (40) and an exact result in 2D(41)). 

In some cases, however, the present theory takes into account the 
proper entanglement constraints: first, when there is only one topological 
class in the Gibbs space. This is the case for example of the star-polymers. 
All knotted topologies are accessible by continuous deformations, without 
cutting the chains. More generally, there are no knotting constraints for 
any polymer network which has no loop and has a treelike structure. 
Constraints appear only when the network possesses constitutive loops. 

Second, in two dimensions, (1) it is interesting to remark that 
self-avoiding polymer networks are never knotted. Indeed, there are no 
crossings of the polymer lines and no topological knot constraints appear. 
Actually, in 2D, a polymer line could be knotted not with another line, but 
only with points. (4~ More generally, the problem of knots for several 
polymer lines is specific of three dimensions. It is not seen in 4 - ~  dimen- 
sions, since the space is too "large." 

3. R E N O R M A L I Z A T I O N  BY S T A R S  

Consider again the most general polymer network fr and its partition 
function ~(fr (2.14). According to (2.6), we expect it to scale with a 
specific critical exponent 7~, universal but topology dependent. Due to 
(2.18), the perturbation expansion of ~(f#)  in powers of z is singular in 
e = 4 -  d, and needs to be renormalized. This renormalization will also 
yield the value of 7~. Before giving the principles, (1) we need a reminder of 
direct renormalization theory for simple linear polymers. (5) 
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3.1. A Pr imer  in D i rec t  Renorma l i za t ion  (5'42,43) 

Consider simple linear polymer chains described by the continuum 
Edwards model (2.1). The physical size of an isolated polymer chain is 
measured by the end-to-end distance 

R 2 = ( J r (S)  - r(0)] 2) (3.1) 

Note that the size of a chain inside a network f# is the same, up to some 
finite amplitude depending on the location along the network. For a 
Brownian chain one has simply 

R 2 = d S  (3.2) 

For a continuum polymer chain, described by the Edwards model, R: 
becomes (5) a function of the dimensionless interaction parameter z, (2.5): 

R z = Xo(Z, d) dS (3.3) 

where fo  is the swelling factor. (5) Its singular Taylor-Laurent expension in 
powers of z and 1/5 reads ~5) 

Y ' o ( z , d ) = l + z ( ! - l ) + z 2 (  - 6 ~ +  ~ - ~ ) + - . .  (3.4) 

and renormalization amounts to extracting from this singular expansion 
the asymptotic behavior of ~ro(Z), z ~ oo. 

In the asymptotic limit S--* 0% z ~  0% So admits the scaling 
behavior (5) 

fo(z ,  d) ~ Ao(~) z(Zv- l)2/', z--+ c~ (3.5) 

where Ao(e ) is a calculable amplitude (42) and where v is the correlation 
length exponent (1.3) for d =  4 - e  such that R 2~  S 2v. We return below to 
the method for deriving (3.5) from (3.4). 

Another important quantity is the single-chain partition function, 
which in the present formalism is the 1-star partition function 
~ ( ~ ,  b, S, d). It reads, due to (2.14), 

z r (N ,  b, s, d) = z ( N ,  z, d) (3.6) 

Its singular perturbation expansion is (5) 

( )  (67) 
Y ' ( ~ ) = l + z  ~ + 1  + z  z 52 ~ + - . -  (3.7) 
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and from it, Wilson's method yields the asymptotic behavior (5'42~ 

~r(~) - - ,  Al(~) z ~-1~/~ Z--, oc (3.8) 

where 7 is the usual magnetic susceptibility exponent (1.3), and Al(e ) is 
calculable. ~42) The renormalized theory will be expressed in terms of the 
dimensionless second virial coefficient g,(5) such that the osmotic pressure 
expands like 

Hfl = C + �89 gC2(Z~R2/d) a/2 + ... (3.9) 

where C is the chain concentration. In terms of connected partition 
functions, g reads 

g = [~e(5~)]2 - -  (3.10) 

where Y ' (~  x ~ )  is the connected partition function of two independent 
chains (see refs. 5 and 43 for precise definitions). It is interesting to note its 
Taylor-Laurent expansion in powers of z (5) and e: 

E 1 - e L - ~ + ~ ( - 1 5 - 6 4 1 n 2 )  + - . .  (3.10bis) 

The beautiful idea of this direct renormalization theory is that g reaches a 
finite fixed point value when z ~ o% and that all scaling functions (in the 
usual sense of renormalization theory (3)) have double pure Taylor series 
expansions in powers of g and e while they are diverging in Taylor series of 
z and Laurent series of e. For example, the scaling functions (5) 

~S 
ao(Z,e)=ao[g,e]=S lnY(o(z,d)=2Z-~zlnYfo(z,d ) 

2a l ( z , e )=2al[g ,e]=S  ~___ln~(~) e Q ~s = ~ z ~ In z ( ~ ,  z, d) 

or the Wilson function' _(5) 

~3 e 0 
W(z, e)=  Wig, e] = S - ~  g= ~ Z-~z g 

become double series of g and e, regular when e--* 0, once expressed in 
terms of g [Eq. (3.10)] substituted for z. This direct polymer renor- 
malization formalism can be proven t34'44) to hold true to all orders in 
from the renormalization of the field theory (~02) 2. The second virial coef- 
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ficient g reaches the fixed point limit (5) for z--, ~ ,  obtained from 
W[g*, e] = 0: 

g * ( ~ ) = g +  + 4 1 n 2  + . - -  (3.11) 

I proposed a simpler minimal renormalization scheme for polymers in 
refs. 35 and 43. There it is sufficient to substitute for z in any scaling 
function a minimally renormalized parameter zR of the form 

n~2 e-g+ "'" + (3.12) 

such that any scaling function becomes pole-free in e, to all orders in zR. It 
reads to first order, (for polymers) (3s'43/ 

ZR =2_z28q_23  (64 17) -~-+-~- + ..- (3.12bis) 

and its fixed point value is 

e ( e )  217 
z * = g +  g ~ - + . . .  (3.12ter) 

I used this to calculate critical amplitudes in the Edwards model (42) or 
exact properties in d - -4  dimensions (43) and shall rely on it later. Let us 
generalize the direct renormalization theory to any network. 

3.2. Renormal izat ion Principle for  Networks:  Factorizat ion 
over the Vert ices 

First, note that the partition function ~e(~q) [Eq. (2.14)] of a given 
network ~ scales naively as S -~a/2. But in the asymptotic limit, i.e., near 
the fixed point limit, the physical size will be given by R 2 [(3.3), (3.5)] and 
not by S anymore. So it is natural to set 

~ ( ~ ,  b, S, d) = (2rcR2/d) a~e/2 Zv(fq, z, d) (3.13) 

where Z~ is simply related to Z [defined in (2.14)] by 

Zv(~, z, d) = [Xo(Z, d) ] a~ /2 Z(  ~, z, d) 

Now, we have factorized out the hyperscaling contribution of  the internal 
loops of  the polymer network. Note, indeed, that for a single polymer loop 
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~ =  1, we factorize out R - a ~ s  -va~ S ~-2, where e is the usual specific 
heat exponent of the equivalent magnetic system. So what we are really 
doing here is stating a generalized hyperscaling. This is not sufficient. The 
polymer network still has vertices where new anomalous dimensions 
appear, as in field theory new anomalous dimensions appear for each 
power q)L(x) of, e.g., the ((/92) 2 field theory. So we want to factorize out the 
contribution of the cores of the vertices. For this, we consider (1) the par- 
tition functions Y'(5~L) (in dimensional regularization) of the monodisperse 
star polymers 5eL of L-legs. They read explicitly, since there are no 
constitutive loops in a star, according to the general equation (2.14), 

Y'(5~L, b, S, d) -= Z(SeL, z, d) (3.14) 

The idea (1) is now that in ~(SeL), and more generally in the reduced vertex 
partition functions Zv(~), the divergences come from the vertices and fac- 
torize out over the latter. So we introduce a reduced partition function 
associated uniquely with the core of the L-star (1) 

2L(z, d )  - ~ r ( ~ ) [ ~ ( ~ ) ]  -L/2 

= z(spL, z, d ) l - Z ( ~ ,  z, d)] -L/2 (3.15) 

This core partition function or renormalization factor depends only on z 
and d. The divison by [~'~(~)]1/2 Z corresponds to the defactorization of 
the divergences of L free extremities of the L-star. Indeed, the 1-star is 
simply a linear chain with two extremities and Eq. (3.15) gives 

2,(z, d) -= [ Y ' ( ~ ) ]  ~/2 = Z , / 2 ( ~ ,  z, d) (3.16) 

Note that a similar idea appears in ref. 5, where the renormalization factor 
5~ of a single-chain extremity is just 2~ here. 

Now, we consider a general network fq, made of nc vertices of L legs, 
L/> 1. We can always rewrite its partition function under the form (1) 

~ ( ~ ,  b, S, d) = [2~SXo(Z, d)] a~/2 I-[ E2~(z, d)]"~ d ( ~ ,  z, d) (3.17) 
L~>I 

where the amplitude d(fr  z, d) is a dimensionless function of z and d. This 
means that we have factorized out first the hyperscaling loop factor and 
then all the irreducible contributions (3.15) of the cores of L stars present 
in the graph ~. More explicitly, in terms of the partition functions of the 
stars of fr we have 

:~(~) = (2~R2/d) -a~e/2 [ I  [~(SrL) y , -z /2(~)]nL ~,(c5) (3.18) 
L~>I 
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Until now, all of this has been only a matter of definitions. The main step is 
now to state that all divergences in 1/~, or equivalently any anomalous 
scaling behavior in powers of S, have been factorized out. Hence, the 
residual amplitude d((q, z, d) reaches a finite fixed point value in the 
asymptotic limit S ~  oe, or z--* ~ :  

d( fq ,  z, d) z ~ ~ ' d * ( f f ,  0% d) < ~ (3.19) 

Furthermore, d *  is universal. In terms of the e-expansion, this means that 
d(( r  z, d), once reexpressed in terms of the renormalized dimensionless 
interactions g [(3.10)] (5) or zR [(3.12)] (35) instead of z, has a double 
Taylor series expansion in powers of g or zR, and e, which is regular for 
e ~ 0, to all orders in g or zR: 

d(f~,  z, d) =d[f#,g,d]=-d~f#,ZR, d~ 
singular in 1/e regular regular 

and its fixed point limit is 

d *  = d ( z  ~ oo) = d [ g * ]  = d ~ [ z * l  (3.20) 

The statement (3.17), (3.19) is a nontrivial one. ~1) It means that in addition 
to the hyperscaling factorization (3.13), all divergences of the field theory 
associated with a given network ff come from the vertices of ~q and can be 
multiplicatively factorized over the vertices. Let us check it for the water- 
melon network. 

3.3. Example of the Watermelon  Ne twork  

The watermelon network ~ has L -  1 constitutive loops (Fig. 5). We 
calculated its partition function to first order in (2.34), adding one loop via 
one interaction: 

~((~/r = (2rcS) d / m -  ~ L d/2 

• { 1 - z [ ! ( L 2 - 2 ) + 2 - 4 L + L 2 + ( L 2 - 2 ) l n L I }  (3.21) 

To renormalize it as in (3.18), we need the swelling factor (3.4) to first 
order 

Ys l + z ( 2 - 1 ) +  ... (3.22) 
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Fig. 7. First-order diagrams contributing to the star partition function ~(SPz). 
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Expanded in e, it reads 

On the other hand, 

and in e 

J = z[2/e + 1 + O(e)] 

d =  _b(2~z)-a/2 fSds  lSds,  (s + s ,) el2 

1 
= - z  (2 2 - a/2 _ 2) 

(1 - d/2)(2 - d/2) 

d = z ( - 2 / e  + In 2 -  1) (3.25) 

Hence, to this order, the vertex renormalization factor (3.15) reads 

L 1 
ZL(z, d ) =  1 + - ~ J + s L ( L -  1 ) J  

= l + z ~ -  ( 2 - L ) +  1 + ( L -  1)(ln 2 -  1) (3.26) 

(3.24) 

and the partition function ~e(Sgr) of the L-star. It has been calculated in 
ref. 1 (see also ref. 5) to first order (Fig. 7) and an immediate application of 
the perturbative rules of Section 2.4 gives 

~(O~ - - 1 + L J + � 8 9  1 ) d  (3.23) 

where J and J correspond to the two diagrams of Fig. 7: 

J = -b(2~) -a/2 ds ( S - s )  s -a/2 

F(1 - d/2 ) 1 
F(3 - d/2) ( 2 -  d/2)(1 - d / 2 )  
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For a watermelon network ~Wr, the set of numbers of L'-leg vertices is 
trivially nL = 2, nL, ~ L = 0 and the number of loops is A ~ = L - 1. Hence the 
(universal) amplitude ~r defined in (3.17), (3.18) reads 

~ ( ~ ) = z r ( ~ ) [ ~ ( ~ ) ]  2[~(~)]L(2~s~0)~ 1~/~ 

= ~e (~,UL) 2~2(2~zSY.0)a~L-t)/2 (3.27) 

Substituting to first order in z all the Taylor-Laurent expansions 
(3.21)-(3.26), we find 

~ ( ~ ,  z, d) = L-a/z{  1 - z [ ( L  - 1 )(1 + L In 2) + (L 2 - 2) in L]  } 

As expected, the poles in 1/e have all identically disappeared [to order 
O(z)] from this amplitude, and this for any L. Moreover, this should work 
to all orders, provided z is replaced by the renormalized g [Eq. (3.10)] or 
zR [Eq. (3.t2)]. Hence the amplitude zg reads 

d[~/Uz, g, d] = L  d/2{1 - - g [ ( L - -  1)(1 + L l n Z ) + ( L Z - Z ) l n L ]  + O(g2)} 

and its universal fixed point value is, according to (3.11), 

~4*('~L) = L-a/2{1 - ~e[(L - 1)(1 + L In 2) + (L 2 -- 2)In L]  + O(e2) } 

(3.28) 

This nontrivial example (to first order) illustrates our general scaling 
factorization (3.17) and (3.18) over vertices. We obtain indeed that a water- 
melon network, which is topologically quite distinct from stars, can be 
renormalized simply in terms of its two L-star vertices and in terms of the 
hyperscaling loop factor (3.13). 

Admittedly, this statement remains to be established to all orders, and 
in field theory is is far  from being a trivial statement. However, I believe 
that in polymer theory, it is almost "obvious" that only the vertices of a 
network will play a role, provided the general overall dimensional factor 
has been properly taken into account by hyperscaling. Moreover, I give 
below another derivation ~13'22) of the fundamental equation (3.18) in two 
dimensions, where I use conformal scaling. As we shall see, Eq. (3.18) finds a 
natural expression in terms of the basic scaling dimensions xL of the 
correlation functions (2.40) of Section 2.6. 

The assumption of renormalization to all orders of Eq. (3.18) will 
appear in two dimensions as a simple equivalent assumption ~1'a2'13'2z) that 
the L-star polymer vertices correspond in the O(n) conformal field theory 
to some primary vertex operators ~bL of conformal invariance theory ~27~ of 
dimensions xL. Let us now fully exploit (3.18). 
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3.4. Basic Topological Exponents 

Let us consider first the star polymer with L arms. Due to (1.4) and 
(2.5) we expect its dimensionless partition function (3.14) to scale in the 
asymptotic regime like 

~ ( ~ )  ~ =~o~ Z ( 6 e L ' z ' d ) = A L ( e ) z ( ~ - I ) 2 / ~ S Y ~ - ~  (3.29) 

where Ac(e ) is a (calculable) amplitude. Accordingly, the proper irreducible 
partition function (3.15) ZL associated with the L-vertex scales for S or z 
large like 

2c(z ,  e) --, f ie(e) z ~ ~ S ~ (3.30) 
z ~ o~3 

where aL is a new universal exponent 

a c = T L -  1 - � 8 9  1) (3.31) 

and A L - = A L A 1  L/2. The critical exponents 7L or a L are universal and 
independent. Each of these corresponds to a new scaling operator 
depending on L = 1, 2,...; 7L is really the total configuration exponent of the 
L arm-star including the L extremities, while ffL is more fundamental  and 
corresponds exactly to the anomalous scaling behavior of the vertex. 

Now, from the general equation (3.17) one can read off the critical 
exponent 7~ of (2.6) associated with any polymer network. Using (3.5), 
(3.19), (3.30), we find identically the exact asymptotic behavior 

~ ( f f )  = [2rcSAo(e) z {2v- m/~]-d~/2 ]-I [ ]L(e)  Z~L2/~] ~ d*(c~) (3.32) 
z ~ o v  L~>I  
S ~  

In terms of S, we find simply (1~ 

~o(ff) ~ S v d-~ + :CL~ 1 n,% S ~ oe (3.33) 

Hence, as announced,(1) 

y ~ -  1 = - v  d ~ +  ~ nLaL (3.34) 
L>~I  

I stress that this (hyper)scaling relation works in any dimension, (1) in par- 
ticular in 2D or in d =  4 -  e. It is sufficient to determine the basic set of 
topological critical exponents a L for knowing any ~ for any network. So 
the polymer network problem has been entirely reduced to considering star 
polymers. The latter are far simpler objects than general networks, and the 
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calculation of their critical exponents Vc or ac  is simple. (~'5) Note also that 
due to Eq. (2.13), we can write also trivially 

7 ~ - l = - v d +  ~ nLAL  
L >/ 1 (3.34bis) 

AL -- a r - -  l v d ( L - -  2) 

Note also that the usual exponent 7 of a single chain is simply YL= 1 and 
from (3.31) or (3.34) 

y - 1 = 2al (3.35) 

Consequently, the exponent YL of a simple L-arm star polymer is, from 
(3.31), 

7L -- 1 = ~L + Lal  (3.36) 

Of course, using (3.31), one can rewrite any exponent 7~ in terms of the 7L 
exponents of the stars present in f#, by substituting 7L in place of a L. Hence 
AL in (3.34bis) can be written 

AL = 7L -- 1 -- 1L(7 -- 1) -- �89 - 2) (3.34ter) 

The ~r L are known exactly in two dimensions [Eq. (1.15)] from conformal 
invariance theory and Coulomb-gas techniques. (~'~2'16'~7) They are also 
known to O(e) in d = 4 - e ,  ~'5) and we calculate their O(e 2) value in the 
next sections. 

The basic method for obtaining the ac  in d =  4 -  e is first to calculate 
the perturbation expansion of the star partition functions ~(SeL), thus ZL 
of (3.15), and to introduce the scaling functions 

~rL(z, ~) -- S In 2L(z, d) = ~ z ~zz In 2L(z, d) (3.37) 

Once substituted in terms of g or z R 

~ c(z, e) = cr L[g ,  ~] = ~ L~ZR, eli (3.38) 

they become regular double series expansions of g, e or ZR, e. Their fixed 
point values as usual yield the critical exponents ~L, 

O" L ~ O'L(Z -"* OO, 8) = O 'L[g*  , e ]  = O'L~Z~, e~ (3 .39)  

Using (3.26), we find easily to first order 

o'c(z, e) = z -~ (2 - L) + 0 

L 
= aL[g,  e] = g 7 (2 - L )  + O ( g  2) (3.40) 
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with a fixed point value 
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EL 
aL = g ~ (2 - L) + O(e 2) (3.41) 

Note also that the scaling behavior above four dimensions is trivial. 
Indeed, we have identically 

aL=O for d > 4  (3.42) 

and v = 1/2. Hence the network partition function (3.33), (3.34) scales like 

~(~)  ~ (2~s)-a~/2 

which is just the Brownian behavior (2.15), as expected. 
It is also interesting to look at the marginal case d =  4. (28,437 

3.5. Logari thmic Behavior in d = 4  

The factorization formula (3.17) still holds as in any d. The only 
difference is that the factors have various scaling behaviors. First we have 
in 4D (43) 

R 2 ,-~ S(ln S) TM (3.43) 

Second, the scaling function (3.37) reads 

c9 L 
S ~-~ In 2L=aL[g,  0] = g ~ - ( 2 - L )  (3.44) 

where g in 4D has a logarithmically vanishing value (43) 

1 S + 1 7 1 n ( 4 1 n S  ) ( 1 ) 
g = 4 1 n  4 (4 InS)  2 + 0  1 ~  (3.45) 

and, in principle, a cutoff term s o is present (43) in In(S/so), not recalled here, 
for simplicity. Substituting (3.45) in the equation above and integrating on 
S gives 

[ (lnlnS ] 
ZL ~ (ln S) L(2 L)/8 1 + O \ ~ j j  (3.46) 

up to calculable corrections. (2s,43) 
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Substituting the logarithmic terms (3.43) and (3.46) into (3.17) gives 
for any network the exact behavior 

~e(f#) ~ (27~S) --2&a (In S ) -  c~~ + .~-,L ~> 1 nLL(2- L)/8 (3.47) 
d = 4  

S ~ o o  

Here again, corrections terms of order In in S/ln S are easily calculable (see 
Section 6.c of ref. 28). Note also that the number of loops can be expressed 
in terms of the {nL} [Eq. (2.13)]. Hence, in 4D, the exact logarithmic 
scaling for a polymer network with excluded volume reads finally 

=~(ff) ~ (2rcS) - 2z (In S) - 1/2 + ~L~, nL(4 - -  L 2 ) / S  (3.48) 

For a star polymer with L arms, n ~ = L ,  n L =  1, nL ,~ r=0 ,  and S - = 0 .  
Hence (3.47) gives trivially the exact dominant behavior 

~e(~9~ d74 (In S)-L(L 3)/8 (3.47bis) 

3.6. Link to  the  A n o m a l o u s  D imens ions  x L 

The critical exponents a/~ correspond to the scaling of the L-leg 
vertices in the "size space" S, while in Section 2.6 we defined some critical 
anomalous dimensions xL [Eq. (2.40)] associated with the algebraic decay 
in space of the field-theoretic correlation function of L polymer lines tied 
together, and with fluctuating lengths (Fig. 5). Of course, the sets {~rL} and 
{xL} are related one to another. ~1'18) 

For this we first calculate the polydisperse partition function Y'~~ 
(2.38), of the "watermelon," using in the integral the scaling form (2.43) of 
GL away from criticality. We find after integration of (2.38) and a simple 
dimensional analysis 

~ p o l y ( s  ) ,.~ er, SS ~2xL d)- 1 (3.49) 

which gives a polydisperse exponent ~,poly I yt/  L 

~)poly __ _ _ • (  2 X  L __ d) (3.50) 
~//'L - -  

Note that e r ' =  It is just the effective connectivity constant, regularization 
dependent. 

Now the relation (2.39) holds ~1) between the polydisperse watermelon 
partition function with lengths fluctuating about a total length S and the 
monodisperse one where all the L lengths equal S. Hence the monodisperse 
exponent ?~L of the watermelon network is simply, from (3.50), 

~ L -  1 = - -v(2xL - d) - L (3.51) 
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Now, we can apply (1) the general formula (3.34) to this particular network 
~L described by the simple set {nr, } 

nL=2 ,  n L , ~ L = O  (3.52) 

which is a p u r e  L - t y p e  case, with two vertices. Hence 

~ L  - 1 = - v d ( L  - 1 ) + 2 a  L 

Comparing this relation to (3.51) yields 

~rL = --VXL + L ( v d - -  1 )/2 (3.53) 

or, in terms of the anomalous part x~, (2.40b), 

~rL = --VX'L + L ( v  --  1/2) (3.53bis) 

This formula is important since it relates two really distinct topologies, 
namely that of pure L-stars (O-L) and that of watermelons (xL) where the 
extremities of the L arms are tied. It is also technically interesting since 
either cr L or XL is the easiest accessible quantity. In 4 - e dimensions, the aL 
are the best quantities to evaluate (see Section 4), while in two dimensions, 
the dimensions xL of the L-vertex operator belong to the Kac table (45) of 
conformal invariance, and are accessible from Coulomb-gas methods. (16-2I) 
Finally, we can rewrite the general formula (3.34bis) in terms of the X r ,  

7 ~ - 1  = - v d +  ~ nLZl L 
L>~I 

A L = v ( d -  x L )  - L / 2  (3.54) 

= v ( d -  x'L) - L / 2  - v ( d -  2)L/2 

Note finally an important consistency check (1) of the scaling theory presen- 
ted here. As already mentioned, the insertion of 2-leg vertices on the 
network is just a trivial point insertion, which divides a chain into two con- 
nected pieces, and hence does not change the network c~. Hence, n2 is really 
arbitrary in ~, and can even be interpreted as the number of monomers of 
if! Hence, we must have identically 

0-2 = 0 (3.55) 

This comes also mathematically from the identity ])2 =~1 ~ of the 
exponents of a two-leg star and of a single chain. Inserting this in (3.31) 
gives indeed 0-2 = 0. This identity is checked in the exact two-dimensional 

822/54/3-4-4  
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value (1.15) and to order O(e) in (3.41). Notice then that 0- 2 = 0 implies in 
(3.53) the identity 

d -  x2 = 2 - x~ = 1/v (3.56) 

This result is actually just another form of the hyperscaling relation 
:~=2-vd, and can be obtained directly from the definition of the 
correlator G2 [(2.36), (2.40)], which in field theory, or in the O(n) model, 
is the energy-energy correlator. 

4. C O N F O R M A L  I N V A R I A N C E  IN T W O  D I M E N S I O N S  

Let us give an alternative derivation ~22'13~ of the renormalization 
equation (3.17) for two-dimensional polymer networks. In conformal 
invariance theory we associate r a (primary) operator ~27'46) ~b L to each 
L-leg vertex in a polymer [or, more generally, to each L-leg vertex in the 
O(n) model; see refs. 20 and 26 for a discussion in this case]. Then the 
correlator G L [(2.36), (2.40)] of the two L-leg vertices in the watermelon 
network reads 

(~L(X) ~L(Y)>T = GL(X - Y ,  T) (4.1) 

and according to Eq. (2.40) it decays algebraically at the critical point for 
d = 2  as 

(~bL(X) ~bL(Y)> Tc = IX--YI 2xL (4.2) 

where xL appears as the scaling dimension of the vertex operator ~br. 
Now consider a network ~r made of vertices i = 1 ..... ~ ,  with Li legs, 

and placed at position zi in the complex plane, and described by the vertex 
operators ~bLi(zi). Then the field-theoretic correlation function of these ~bL is 
related by Laplace transform to the multiple correlation function of the 
network (22) 

G ~ ( z 1  .. . . .  z~/-;T)-~<iOl ~Li(Zi)>T ( 4 . 3 ,  

=fo ~ 1-[ dS~exp - T  2 
a = l  a = l  

• ~e~r ..... S y ;  Zl ..... z~)  (4.4) 

Note that here the total length is fluctuating with a chemical potential - T, 
and that the positions of the vertices are fixed in the plane. The network fq 
is first taken as polydisperse with lengths $1,..., S y  in the X branches. 
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At the critical point er~= #-1, the critical correlation function has the 
properties derived from conformal invariance theory. (27"461 Ge is eonfor- 
mally covariant. If w(z) is any analytic transformation of the complex plane, 
we have 

r = Iw'(z31 x~, OL,(W(Z, 
i ~  Tc i = 1  i Tc 

(4.5) 

where w'(z)= dw(z)/dz and where the xri are the scaling dimensions (4.2) 
of the vertex operators ~bL,. Applying this quite general conformal 
covariance equation, one can show that the multipoint correlation 
functions have the form (27"46) (for scalar primary operators) 

~l~,(zi) = I~ Iz~-zjl - ~  i , j ,k , l=l , . . . , ' r  (4.6) 
Tc i, j = l [ ~ k  "~ -'~l [ ' 

i C j  

The values of A 0 can be computed in terms of the scaling dimensions xz, of 
the operators ~b/~, and are linear combinations of the latter. For instance, in 
the case of a three-point function one has simply (27'46) 

= Iz~-z~t-~'  ~+~ t z ~ - z ~ l - ~ - ~ + ~  Iz~-z~l-x~-x'+x~ 

and f f  =- 1. Hence A 12 = xl + x 2 -  x3 and similar permutations for z~23, A31. 
Thus, the total scaling dimension is A 1 2 - t - A 2 3 - I - A 3 1 = x l + x 2 - t - x 3  . We 
shall need the overall scaling dimension of ( I ] i  ~bLi) for a global dilation. 
This dimension is, from (4.6), the sum 5~ =~i,j=l,i~szJo.. It can be 
shown, (46) as above, to be simply the sum of the individual scaling dimen- 
sions of the operators q~L,. Hence 

"K 

5 f = ~ xL, (4.7) 
i = 1  

Now, we consider the correlation function (4.4), 
criticality, for T ~a To. Then we expect it to scale like 

L t Zi 
T 

(4.6) slightly off 

I-I I z i - ~ l  - ~  
i , j = l  
i ~ j  

~lzi-zj[ Iz , -z j l  IT -Te l  v i , j , k , l = l  ..... ~ }  
• g ( I z ~ - z A '  

(4.8) 
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Now, the polydisperse correlation function of the network ff with fixed 
total length S can he obtained by inverting (4.4) and using (4.8), 

~ p ~  Z 1 ,..., Z,r 

= Q  1-I dga(~ S -  S a ~ ( S l , . . . , S . A / - ; z  I ..... z,~-) ( 4 . 9 )  
~o a = l  a = l  

and reads 

dTers t~=~ ' ~ p ~  z 1 ,..., zy/-) = f ~ i  #Li(Zi) 
i T 

(4.10) 

where the contour is taken in the complex plane from - t o o  to +ioo, at the 
right of the T,, singularity. The total polydisperse partition function is 
obtained by integrating the z~ in (4.10) over the complex plane, except for 
one, which is fixed for eliminating translational invariance, 

~eP~ = ~ e rs d2z, (JL,(Z,) 
i= T 

(4.11) 

One inserts now the general form (4.8) in (4.11) and performs simple 
dimensional analysis for extracting the scaling power of (4.11 ) in terms of 
S. Using (4.7) gives readily 

1)-]E~=t .'%] o-,f poly ( q,] oTcS~--l+v[2('k '--  ,t (4.t2) 

and hence a polydisperse exponent 

~poly [2(y/~_ 1 )_  ~ nLXLI 
L>~I 

(4.13) 

This holds for the integrated partition function (4.9) of a network ~ where 
only S = 52;~'__ ~ Sa is fixed. If one goes to a monodisperse one where all 
Sa = S, a = 1,.,., A#, one has simply to factorize out (1) the constraint factor 
S~, ~- 1 appearing in (4.9). Hence our usual partition function (2.2) reads 

~CY ( ~ ) ~ e T c S S ~ <s -1 ,  S --+ oo 

with 

L ~ I  
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Of course, the derivation given here in two dimensions is quite general. In d 
dimensions one can see easily from (2.40) and (4.11) that the generalization 
of (4.14) is 

7 ~ - l = v [ d ( ~ U - 1 )  - ~ nLXLI--JV (4.14bis) 
L~>I 

where 

L 
x~=_ x'~ + 2 ( d -  2 ) (4.14ter) 

is the total scaling dimension of the L-vertex operator in (2.40). Now, we 
can use the trivial topological relations X = ZL nLL/2 and ~ = Z L  nL to 
get in (4.14) in two dimensions 

? ~ - l = - 2 v +  ~ nL[V(2--XL)--L/2] 
L~>I 

Similarly, (4.14bis) just gives in d dimensions 

(4.15) 

7~,- 1 = - v d +  ~ n r {v [d - -X 'L - - (d -2 )L /2 ]  - -L/2} 
L>~ I 

= - v d +  2 nL{v(d--xL)--L/2} (4.15bis) 
L>~I 

which is just (3.54), derived there from the renormalization by stars 
[Eq. (3.17)]. So we see that the description of a network in the Edwards 
model via the partition function (2.2) and the renormalization principles 
(3.18), on one hand, or the field-theoretic O(n) description (4.3), augmen- 
ted by the structure of multipoint correlation functions (4.8), on the other 
hand, are entirely equivalent, as they must be. This reinforces strongly our 
belief in the validity of the multiplicative renormalization scheme (3.17) to 
all orders. In two dimensions the values of scaling dimensions xL belong to 
the so-called conformal Kac table. (2v'45'46) See refs. 12, 13, 18, and 20 for 
detailed studies. It has been shown (46) that unitary critical models with a 
central charge (27~ c < 1 can be classified as 

c = l - 6 / m ( m + l ) ,  m>~3 (4.16) 

where m is an integer, and with scaling dimensions x of the scalar 
"primary" conformal operators 

x = 2hp, q 
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where hp, q belongs to the Kac table (45) 

[ ( m +  1 ) p - m q ]  2 -  1 
hh'q-- 4re(m+ 1) (4.17) 

where p, q are integers in the minimal block (46) 

l ~ < p ~ < m - 1 ,  l<~q<~p (4.18) 

The central charge is a universal number associated with the finite-size 
corrections to the bulk critical free energy, and is characteristic of a given 
critical theory. (27) For  polymers, the free energy of the n = 0  model is 
always zero, and hence C = 0 .  (12'13) Thus, one finds in (4.16), m = 2 .  Then 
the scaling dimensions xL of the L-vertex operators (2.40) have been 
numerically identified as ~12) 

X/_ = 2hL/2. 0 = (9L 2 - 4)/48 (4.19) 

So one sees that polymers in 2D correspond to a c = 0  conformal field 
theory, with m = 2, i.e., this theory is just preceding the m ~> 3 classification 
of Friedan et al. (46) Note also that for polymers, one has to extend the 
values of p, q outside the minimal block (4.18), which is here reduced to 
the trivial identity h1.1 = 0. Moreover, p, q can be half-integers. The confor- 
mal formula (4.18) can be also derived by Coulomb-gas techniques ~16'~7'2~ 
and extended to polymers in the dense phase, ~3'18 2o) at the O-point, ~26) 
and near a surface ~22) (see Section 8). 

5. TOPOLOGICAL EXPONENTS a ,  TO ORDER O(~ 2) 

5.1. Diagrammatic Expansion 

In this section, we calculate the exponents ac, L >~ 1, to second order 
in e = 4 -  d, and hence any 7~r by the same direct method as in ref. 28 for 
the critical exponents of the intersections of random walks. Note that in 
another context, namely that of diffusion near absorbing fractals, (47) some 
similar star exponents were calculated. 

According to the general theory (3.15), (3.30) above, we have simply 
to evaluate the (dimensionless) partition function ~(6ec) of an L-leg star 
polymer for any L, to second order in z, the first order being given in (3.23), 
(3.26). Then one will extract the exponents ~L and cr L by renormalizing the 
singular (z, i/e) expansion of ~(6eL) or 2L, as in (3.37)-(3.39). 
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The diagrams contributing to ~((5~L) up to order z 2 are given in Fig. 8. 
Their contributions are calculated with the perturbative rules given in 
Section 2.4. 

The two-loop diagrams of Fig. 8a involve interactions between dif- 
ferent arms of the star, and already appeared in the theory of the intersec- 
tions of Brownian paths, ~28) i.e., of mutually avoiding walks, and I have 
taken them from my previous work. The second-order diagrams of Fig. 8b 
involve at least one self-interaction of a given arm, and are to be added to 
those of Fig. 8a in order to get the statistical mechanics of not only 
mutually avoiding but also self-avoiding polymer chains in a star. Con- 

+ /' [n2)] "J(2) - ( l -  J/  z2[E2 ~(1- E2 g 

= z 2 r 2 +  1 3131 ~o= LE 2 ~- (3-21n2) ]  

2 4 /~ ( I - [n2) ]  
: z [~2+g ~ 32 _2,'4 + 

1 13- 21n21] 

z2( 6 9 31~1 = , - ~ -  ~-) 

& %~1 , - ~ -  ?-) =z2 (  4 2 

a b 

Fig. 8. Diagrams contributing up to two loops to the star partition function, and their 
elementary contributions. (a) Diagrams involving the mutual interactions of different arms 
(calculated in ref. 28 for the random walk intersection problem). (b) Diagrams involving 
self-interactions. 
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tributions 41) to 43) are new, while the four last diagrams of Fig. 8b of 
course appear in the theory of simple linear polymer chains. (5) 

The evaluation of these diagrams requires some care, since they are 
polymer diagrams at fixed lengths S of all the arms. For instance, the 
integral representation of the diagram ~ of Fig. 8a is, according to the 
rules of Section 2.4, 

= z 2 f ?  ds, ds2 ds', ds'~ 

• O ( l _ s l _ s 2 )  O(l__s,l_S,2)[(Sl+S,l)(S2+S,2)+S2S,2] d/2 ( 5 . 1 )  

To extract its Laurent expansion in l/e, the best way is to represent each 0 
function as an imaginary contour integral 

fo 
~ + i ~  d a  

O ( x )  = ax a e ~ + (5.2) 
- ioo 2rcia  e , 

This reconstructs the Schwinger-Feynman a-parameter representation of 
the associated field theory, where t w o  d i f f e r e n t  "masses" a occur, one for 
e a c h  arm. One has then to extend the standard treatments of such 
integrals to the present more complicated case of multiple masses. 2 This 
procedure is also different from the one used in ref. 47, where the total 
length St + $2 of the two arms fluctuates, with a standard killing factor 
exp[-m2($1 + 82) ]. 

I skip the technical details here and give the independent con- 
tributions. 

1. One-loop: 

2. Two-loop: 

J = z  - - - l + l n 2  
8 

~ =z2 [ 4 + 4 ( 1 - 1 n  2)] 
L ~2 

~r = Z2 1 2~'2 +1~ (3 -- 2 In 2)] 

2 F o r  a t r e a t m e n t  in the s y m m e t r i c  o n e - m a s s  case see, e.g., ref. 48. 

(5.3) 
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E 44( )j = e 2 e 1 -  ln2 

~ 3 1 = z 2 [  2 ~ + 1 ( 3 - 2 1 n 2 ) ]  

~5)=z2 4 ~) e2 (5.4) 

Now, for a given number L of arms in the star 5PL, one has to weight each 
diagram according to the combinatorial number of times it appears when 
different arms interact. We find finally for any L ~> 1, in the order of Fig. 8, 

1 L L -  j 2  

+ L  2 

+ L ( L - 1 )  o~(3)'I-(t~ JZ+Lj2+LJ(4)+LJ(5) (5.5) 
\ z /  

Using now the values (5.3), (5.4) and regrouping terms, we find to this 
order 

with 

~((5~L)=I+Z --~ + A'r + z2 \ e 2 (5.6) 

AL= - 2 ( L ) +  2 L = ( 3 - L ) L  

A2= (ln 2 -  1) ( L )  + L  

(5.7) 

(5.8) 

(5.9) 
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B ~ = ( 1 )  ( 7 - 6 1 n 2 ) + 2 L (  L - l ) 2  (1 -1n2)  

+ 

Now, we have to renormalize this singular Laurent-Taylor expansion in 
order to extract the asymptotic behavior ~e(SeL)',-~ ~,,'vL- 

5.2. Universal Values of the Exponents 

Since we use the "direct renormalization" method, (5) the calculations 
are very simple and require only the calculation of a log derivative like 
(3.37). (There are no explicit renormalization conditions as in field theory 
even if they are hidden in the process. (34'3s)) We could introduce at(z, e), 
(3.37), associated with the reduced core partition function 2L, (3.15), 
which can be calculated to second order from (5.6). Here we choose first to 
work with the complete star partition function ~(SeL). So we introduce the 
logarithmic derivative 

yL(z,e)-l=S In ~(5~L) = 2 z ~z In ~(5~L) I~ (5.11) 

Its expression 7L~ZR, e~ once zR [Eq. (3.12bis)] (or g(5)) is substituted for z 
is a regular double Taylor series in zR, e (or g, e). ! shall not need here the 
straightforward but lengthy corresponding algebra for the particular values 
(5.7)-(5.10) associated with .~'(SeL), (5.6), since I have already given the 
general answer in ref. 42 for any scaling function of the form (5.6) (see 
Section 3 of ref. 42). A diverging scaling function of the polymer theory of 
the form 

Yf(z,e)= l + z(A+ A')+ z2(~+B@)+ ... (5.12) 

has the asymptotic behavior 

~ ( z ,  e) = d ( e ) z  ~2m~(~~ S ~ 
Z ~ o o  

(5.13) 

where d ( e )  is a calculable amplitude, and where a is the universal critical 
exponent at the fixed point [Eq. (3.12ter)] 

a ( e ) = ~ - +  - - A + 8 A ' +  +O(e 3) (5.14) 
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Of course, Y'(z, e) must have a scaling behavior, and hence must be "renor- 
malizable," and, to this order, the precise condition for its Taylor-Laurent 
coefficients reads (42) 

8A + 2B - A 2 = 0 (5.15) 

So we see that this gives the complete answer to our problem. 
It is first a matter of straightforward algebra to check that the coef- 

ficients Ac, Ak, BL, Bk in (5.7)-(5.10) satisfy (5.15) for any L, and hence 
~((5~L) is proven (at least at this order) to have an anomalous "renor- 
malizable" scaling behavior (5.13), with an exponent [Eq. (5.14)] 

yL(e) - 1 = ~(~) (5.16) 

Second, inserting the values (5.7)-(5.10) into (5.14), we find after some 
trivial algebra the y exponent for the star 5eL to O(e2): 

ys~L-- 1 _= yr - -  1 = ~  (3-- L)-~ + L ( 8 L 2 - 3 7 L + 5 5 ) + O ( e 3 )  (5.17) 
\ 8 /  8 

5.2 .1 .  V e r t e x  E x p o n e n t s  aL.  Now,  the irreducible core exponent 
a r  in (3.30) is readily obtained from (3.31): 

L 

s L f~;\2 L L 
= ~ ( 2 - / ; ) 2 + ( ~ )  -~( - 2 ) ( S L - - 2 1 ) + O ( e  ~) (5.18) 

Inserted into Eq. (3.34) the values (5.18) give the exponent Ye of any 
polymer network fr to order O(s2). 

The exponents Ac of the equivalent formula (3.34bis) have an O(s 2) 
expansion which can be derived from (5.18) and (1.3): 

JL = -  d ( L - 2 ) + - ~ - ~ ( 4 - L 2 ) +  ( L - 2 ) ( L - - ~ - L -  (5.19) 

5.2.2. Scaling Dimensions x , .  The values of the dimensions x/, 
are of importance since they can be used in direct space [Eq. (2.40)]. They 
are immediately obtained from the basic relation (3.53): 

, s f e \ 2 L  
xc = -~ L(L - 1) + ~ )  ~- ( -  8L 2 + 33L - 23) + O(e 3) (5.20) 
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L xL--~(d--2)+ x'L 

Recall that these anomalous dimensions govern the critical correlation 
function of L infinite chains tied together 

G L ( X - Y ,  Tc) "~ IX--yI-L(d-2) 2x~ 

5.3. Relation to Known Exponents 

Let us first relate our O(e 2) results (5.17)-(5.20) to known results. 
Essentially the one-chain L = I  case corresponds to the spin-spin 
correlation function of the O(n ~ 0) model, and the two-chain L = 2 case 
to the energy-energy one [Eq. (2.40)]. We check indeed from (5.17) that 

~ l - l = ~ , ~ 2 - 1 = g + ~  +O(e 3) 

for the 1- and 2-star exponents, in agreement with the identity 7s~,-1 = 
7s~2 -= 7 -  1 [Eq. (1.3)]. For the vertex exponents ~L, we have, in agreement 
with our general formalism (Section3), 2 a 1 = ~ - 1 ,  while the two-leg 
exponent r satisfies (3.55), 

O'2~0 

The xk exponents for s = 1, L = 2 read 

xl = �89 ~ + o(~ ~) 

x~ = (e/8)2 + (e/8): (11/2) 

and yield through the identities x '  1 = r//2 and 2 -  x~ = 1/v, 

r/= +O(~ 3) 

v=~ l + g + ~  +o(e 3) 

which are the n = 0  values. (is) 
It is also interesting to compare the e-expansion results to the exact 

values in two dimensions. They are, for the star polymers, (1) 

4 + 9L(3 - L) 
7s~L- 1 - 64 (5.21) 
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and for the vertex exponents, ~1) 

1 
tr L = ~ (2 - L)(9L + 2) (5.22) 

and for the xc  (-=x~ in 2D) [Eq. (4.18)] 

1 
x L = ~-~ (9L 2 - 4) (5.23) 

Actually, in 2D the x L values are calculated exactly in the Coulomb-gas 
formalism, and the ~rL are derived using the general formalism described 
here, which is the reverse of the e calculations presented here. 

The 2D formulas are polynomials of second order in L, while e expan- 
sions (5.17)-(5.20) involve terms enPn+ I(L), where Pn+ 1 is a polynomial of 
order n + 1 in L, which blows up with L, the real expansion parameter 
being rather eL. So this highly diverging e expansion, which is only 
asymptotic, must arrange in such a way to reproduce for e = 2  simple 
quadratic polynomials (5.2l)-(5.23)! 

Another striking feature is the analytic continuation of L to L = 0. For 
trivial and purely combinatorial  reasons, a factor L (i.e., the number of 
choices of the first arm inSeL) always appears in ?s~L, aL, or xL 
[(5.17)-(5.20)] to all orders in e. Hence, in the e expansion, 7a~L~0 = 1, 
trL ~ o = 0, xL ~ o = 0, order by order in e. However, the extension of exact 
results (5.21)-(5.23) to L--+ 0 gives in 2D 

7 ~ 0 - 1 = 1 / 1 6 ,  a o = 1/16, x0 = -1 /12  (5.24) 

So the two limits L ~ 0, e ~ 2 do not commute. The two-dimensional non- 
trivial results are related to the anomaly or central charge c in 2D. Indeed, 
we see from (4.17) and (4.18) that Xo=2ho.0 = - 1 / 4 m ( m + l )  for m = 2 ,  
while c is given by (4.16). It can be shown (by extending the arguments of 
refs. 41, 16, and 17) that Xo = - 1 / 1 2  could correspond to the repulsion 
between two sets of concentric polymer rings located around two points X 
and Y, respectively. The number  of rings around each point is arbitrarily 
large and the mean lengths are infinite. So a zero-star in two dimensions 
should be seen as a system of successive rings entangled with a point 
(the core). The nontrivial values (5.24) are the reflection of this "anomaly." 
Polymer lines can be entangled with a point only in 2D, and not in higher 
dimension. Hence, this effect disappears in d >  2, and, of course, cannot be 
seen in the e expansion. 
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5.4. Contact Exponents 

From the knowledge of the aL or the XL one can derive other 
interesting critical exponents, namely the contact exponents. These 
exponents were introduced by des Cloizeaux (9) for the contact probability 
between points of a single chain. More precisely, one has 

P,(r) = R-aFa(r/R ), a = 0, 1, 2 (5.25) 

where Pa is the probability that the two extremities of a segment inside a 
single chain are at a relative distance r (Fig. 3). By convention, (9) a = 0  
corresponds to the two extremities of a chain, a = 1 to the contact of one 
extremity inside the chain, and a = 2 to that of the interior points. 

In (5.25), Fa is a universal function, which depends on the location of 
the considered segment along the chain, the scale R being its swollen 
size. (8'9) The universal contact exponents arise when one lets r ~ 0. Then 

Fa(x) x%'O x~176 (5.26) 

The contact exponent 0o of the two extremities is well known to be related 
to the usual y exponent of the chain by (9) 

0 0 = 7 -  1 
v 

Incidentally, this shows again that the 7 exponent is really an end effect in 
polymer theory, <9'1) in agreement with the general formula (3.35). In the 
theory of self-avoiding tethered manifolds, ~49-51) which generalizes the 
polymer theory, this leads to a nonuniversal and shape-dependent ~.~51,49) 
Note also that the full universal functions F~ can be computed explicitly to 
first order in ~.~8) 

Many more higher-order contact exponents can be defined, ~11~ as 
alluded to in the introduction. I have described their physics and derived 
the scaling relations between them in detail in refs. 11 and 13. Here I only 
repeat the essential findings. 

First one can ask about the probability of forming a certain set of con- 
tacts inside a linear polymer chain ~t~) by folding the latter onto itself. Then 
one obtains a graph ff of contacts (Fig. 9). The probability of forming such 
a topology is of course P ~ =  ~((ff) /Lr(~) ,  where ~(f~) is the restricted 
partition function of the chain with fixed vertices forming the contacts if, 
i.e., just the partition function of the graph ff as in (2.2). L r ( ~ )  is similarly 
just the full partition function of the single chain. Hence we find ~11) 

P~r ~ S 7~-e "~ S r~ 
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Fig. 9. Self-contacts of a single chain and the associated graph c5 of contacts. The probability 
for a chain to form the a5 contact is P~ ~ S -  r~ with T~ = y - ye. 

where 

] c  = 7 -  ~ (5.27) 

is the ( r  e x p o n e n t  ~ m  governing the probability of forming a certain 
folded structure at some prescribed points along the chain (note indeed 
that one does not let the contact points slip along the chain; there are no 
slip links here). In the case of the probability of forming a ring at the head 
of a chain (Fig. 3a), i.e., a "tadpole," the exponent [1 was called the 
"limiting ring closure probability" exponent in early (two-dimensional) 
studies. ~52'53~ Using the general formulas (3.34) or (3.54), one finds the 
explicit and universal expression of F~ in terms of the scaling dimensions 
of the contact vertices so formed in (#. Let us first apply this to the three 
simplest cases of contacts ( a = 0 ,  end-end; a =  1, end-interior; a = 2 ,  
interior-interior) (Fig. 3). The graphs so formed are described by the sets 
of vertices: 

a = 0, n c = 0, VL 

a = 1, n 1 = 1, n 3 = 1 

a = 2 ,  n1=2,  n 4 = l  

and a loop number Le = 1, Hence 

~-o : 20"1 + v d =  7 - -  1 + v d  

](1 : 20"1 + v d - -  a 1 - -  a 3 = 0-1 - a3  + v d  

F2  = 20-1 + v d -  2 a l  - o 4 ~ -  v d - -  0-4 

(5.28) 
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Now, one establishes easily ~1L5) a well-known scaling relation between 
these contact exponents (5.27) describing the scaling in terms of the size of 
the chain, and the contact exponents 0 o, 01, 02 describing the approach in 
direct space. It is Ya = v(d+ Oa). m) Hence we find explicitly 

vO o = 20" 1 

v01 = (71 - o3 (5.29) 

vO 2 ~ --(7 4 

Note that the 0 exponents depend only on the local scaling powers (7 of the 
vertices upon contact. Indeed, the relations (5.29) can be written, since 
0" 2 ~ O, 

vOo = 2al  - a 2 ,  v01  = ~ (72 - ( 7 3 ,  V02 = 2(72 - ( 7 4  

which is just the general mnemonic subtraction rule (1.7) mentioned in the 
introduction. 

I now give the full generalization which describes any type of contact 
for a polymeric system. It will embrace all cases, namely successive contacts 
of any order inside a linear chain, ~11) contacts between branching vertices 
inside a network, (13i approach exponents between the cores of several 
stars, etc. Let us consider a set of I polymer vertices with respective number 
of lines Li, i =  1 ..... I, at positions Pi in d-dimensional space (Fig. 10). 
Notice that these vertices can be vertices of the same connected network, or 
they can belong to several (disconnected) networks, e.g., several stars. In 
the first case, the probability of approach that we consider is measured 
relative to the total set of configurations of the embedding network, while 

Fig. 10. Contact  of several branching points inside a network, or contact of several stars. 
The contact exponent  is Oic,} = xE, L,-- Y~ xL~. 



Polymer Networks 629 

in the second case, it is a relative probability, related to the total number of 
configurations of the various pieces fixed at some points far apart. The 
contact exponents do not depend on the connectivity of the networks. As 
we shall see, they are purely local and given by rules very similar to those 
of an operator-product expansion in field theory. 

Now, our I vertices at positions {Pi} define a set of I -  1 independent 
relative positions = {r~ = P i -  Pl, i = 1,..., I -  1 }, sufficient to describe this 
geometry of contact. Let P{r~, i =  1 ..... I - 1 }  be its probability. Suppose 
now that all these relative positions go to zero together, with r i = x u  g, 
x--,  0, and the vectors ui being of fixed length. Then 

P{r i  : xu.i} x = O  xO(Li} (5.30) 

where 0{L~} is the contact exponent of the set of vertices {Li}. It has an 
expression in terms of the scaling dimensions aL, or xL, of the vertices upon 
contact, which can be found (11'~3) by easy scaling analysis and use of the 
fundamental additive law (3.34) giving 7~ for a network f#. One considers 
indeed the {Li} vertices as being embedded in a larger connected network 
fr (there is an infinite freedom in choosing such a f#). Then one can relate 
the 0{L,} to the difference between the 7~ exponent of the network before 
the contact and to the ?~c of the new network ffc upon contact. The details 
can be found in Section 5 of ref. 13. One finds an exponent O{r,}, which is 
independent of the choice of f# (as it must) and depends only on the {L~} 
through 

vO{c,} = ~ o 'c , -  az, L , (5.31) 
i 

The interpretation is illuminating: one compares the total scaling dimen- 
sion before contact to that generated by the fusion of the Li vertices upon 
contact. This result applies to any number of vertices upon contact. It 
contains as a particular case Eq. (1.7) for the contact exponent 0L.L' of the 
cores of two L- and U-arm stars. In terms of the exponents xL,, the 
relation is Fuse (3.53)] 

0{r,} = xz, c , -  Y, xL, (5.32) 
i 

Note that by linearity in {Li} this formula holds for the total scaling 
dimensions x L E(4.14)ter] as well as for the anomalous parts x'L. Now, 
results (5.18) or (5.20) give all these contact exponents to order O(a2). I 
illustrate it in some interesting cases. First, let us check the values obtained 
in case (5.26), (5.28) by des CloizeauxJ 9) We have according to (5.20) at 
o r d e r  /32 

822/54/3-4-5 
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Hence we find 

Xl=~k~j =$, 

X3=g6q-  3, ' 

x 2 = 8  2 +  T 

Xn=gl2+ (-19) 

9 g 2  
00 = x 2 - 2 x 1  = � 8 8  

0 1  = X 3 - -  X 2 - -  X 1 = 2 - -  e 2 

15 2 
0 2 = X 4 - -  2x 2 = e - ~-~ 

(5.33) 

(5.34) 

in perfect agreement with the field-theoretic values of ref. 9. This is an 
independent verification of the latter, since they were published in 1980. It 
can also be considered as an indirect c h e c k  of the general m u h i p l i c a t i v e  

r e n o r m a l i z a t i o n  structure given in Section 3. Note also that when the degree 
of contact increases, larger coefficients appear in front of ~/8 or (e/8) 2 in 
(5.34), and this is due to the effective e L  expansion in (5.20). Hence the e 
expansion is highly diverging and resummation procedures should be used, 
the simplest one being a Pad6. ~9) 

Another interesting case is the exponent for the t h r e e - b o d y  contacts 
inside a chain, which plays a dominant role at the tricritical O point. It 
corresponds to a set {Li=1,2,3} = (2, 2, 2). Hence we find the new value 
from (5.31), (5.32), 

O t h r e e _ b o d y  ~ X 6 - -  3x2 = --G6/v (5.35) 

In d =  4 - e  dimensions, using (5.18), we have the new e2 result 

0three_body = 3g - (93/32) e 2 (5.36) 

In 2D, due to (5.22) ~ and v = 3/4, C16) the e x a c t  value is 

0three-body = 14/3 (5.37) 

Finally, we are now able to give the contact exponents (1.7) OL.c, of 
two L, L'-arm stars, described in the introduction (Fig. 1). From (5.32) 
they read simply 

OL, L' -~ XL + L' --  XL -- XL' (5.38) 
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The values (5.20) of XL give the O ( e  2) expansion 

valid for any L, L'>~ 1. In particular, we recover the above standard 
exponents (5.34), 0o---01,1, 01 ~ 0a,2, 02=02,2 (Fig. 3). 

In two dimensions we know the exact values of irreducible exponents 
~L, (5.22), or xL, (5.23). Hence, the star-contact exponents have the exact 
values 

OL, L'--- (1/24)(9LL'+ 2) (5.40) 

The usual exponents 0o, 01, 02 are then ~11) 

0o = 01,1 = 11/24 = (7 - 1)Iv 
(5.41) 

01 = 01, 2 = 5 /6 ,  02 = 02, 2 = 19/12 

Note that again the analytic structures of the e expansion (5.39) of 0L, L' 
and of the exact 2D value (5.40) are quite different. In particular, for the 
contact of an L-leg star with a zero-star, OL, o -  0 in the e expansion (to all 
orders), while in 2D it develops a nontrivial value 

0r, o = 1/12 (5.42) 

which reflects the nontrivial zero-star of the above. 

6. S U R F A C E  E X P O N E N T S  

We can generalize the previous study of polymer networks in a good 
solvent to that of networks grafted onto a surface. This was achieved in 
ref. 22 in the two-dimensional case for networks near a repelling surface, i.e., 
at the so-called ordinary surface transition ~23"54 6o) (see ref. 58 for a review). 
In ref. 22, I gave the exact value in 2D of the exponent 7 s of any network 
attached to the surface. However, the surface scaling analysis given there 
(similar to that of Section 4 above) was quite general. It applies equally 
well in d dimensions, and I shall describe it in this paper. I study here only 
the ordinary surface transition. The special transition, ~23'6a'62) where the 
polymers just adsorb, could be studied in the same way. 

6.1. N e t w o r k s  near  a S u r f a c e  

Consider a general polymer network ff made up of JV identical long 
chains of length S. Some of the vertices belong to the surface (or actually 
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stay near the surface, the latter being infinitely repulsive at the ordinary 
transition, i.e., for infinite polymers). Then topological characteristics of the 
network are the numbers {nr, L ~> 1} of L-leg vertices floating in the bulk 

n s solvent and the numbers (22) { L, L ~> 1 } of L-leg vertices near (or "grafted" 
onto) the surface (Fig. 11). In terms of these, the total number X of 
chains, the numbers of vertices ~ in the bulk and f s  on the surface, and 
the number 5r of constitutive polymer loops are given by, respectively, 

1 
Y = Z L(nL + 

L>~I 

~ =  Z nL, ~s = 2 ns (6.1) 
L~>I L ) I  

1 
=5  2 (L--2)(nL+n s ) + l  

L>~I 

All the possible geometrical configurations are obtained by our moving all 
surface vertices (except one fixed to eliminate translational invariance) 
along the surface, and by moving all the bulk vertices in the half-space. (22) 

Fig. 11. A network ~ grafted onto a surface. One surface vertex is fixed, the other ones are 
moved freely when calculating ~s ( f f ) .  



Polymer Networks 633 

Then the partition function of the network so constrained in a restricted 
geometry will scale like 

~r (fr ,,, #Yss7 ~ - 1, S ~ ~ (6.2) 

where 7 s is a new surface-bulk exponent. /~ is still of course (63) the same 
connectivity constant as in the bulk. In ref. 22, I gave the exact value of ? s 
in 2D for f# described by {nL, nS}: 

s 1 1 7~=~+~-~  • nL(2-L)(9L+50) - 1  ~ nS(9LZ+22L-24) (6.3) 
r~> l  32L~>1 

The bulk terms with nL are the same as the contributions in the usual bulk 
exp onents~l) 7~ described in the above sections. The surface contributions 
with the riSE are new and show that, here again, each vertex on the surface 
yields its own contribution. The 2D formula (6.3) is absolutely general; it 
agrees with the exact results by Cardy ~6~ for the one-chain exponents 
71 =61/64 and 711 = -3/16,  and with their numerical counterparts)  64'65) 
Equation (6.3) has been beautifully checked numerically by Colby et al. <66) 
for various star polymers near a surface line or in a wedge geometry (22) in 
two dimensions. 

The derivation of Eq. (6.3) given in ref. 22 is completely analogous to 
that given in Section 4 here, and introduced in addition in the associated 
O(n) field theory surface vertex operators ~b s, with their own surface scaling 
dimensions at criticality, 

G ~ ( X  - Y, T~) s = <~bc(X) ~bL(Y)>rc= IX-Y1-2x'~ (6.4) 

As in Eqs. (2.36), (2.40), and (4.2), G s is the polydisperse correlation 
function of L polymer chains, with fluctuating lengths, and tied together at 
vertices X and Y, now very close to the surface (Fig. 12). In terms of these 
dimensions x s and of the bulk ones xc of (4.2), the exponent 7 s was shown 
to read 

[ as] 7~--l=v 2"r s - l -  ~ (nLx L+nLxL) --JV" (6.5) 
L>~I 

~ . / / ' / / ' / ' , / / ' / ' / ' / / / ' . / / / ' / ' / ' / ' / ' / ' / ' / ' / ' / / / / / ~ / / / / / / / / / / / / / / / / / / / / / / L  

Fig. 12. A watermelon network grafted along the surface. It polydisperse correlation function 
G s at criticality scales like G s ( x -  Y)= I X -  Y1-2x~. 
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a formula generalizing the bulk result in two dimensions (4.14). It is not 
difficult to show, by following the arguments of Section 4 or of ref. 22, that 
in d dimensions one has simply to replace 2~U by d~U and V s -  1 by 
( d - 1 ) ( ~ s - - 1 )  as in (4.14bis), and xr of (4.14ter) is the total scaling 
dimension xL=L(d-2) /2+x 'L  appearing in (2.40). Hence, the exact 
(hyper)scaling relation is in d dimensions 

7 S - l = v [ d ~ U + ( d - 1 ) ( ~ s - 1 )  - ~ (nLxL+nSxS)]--JV" (6.6) 
L>~ I 

In two dimensions, the exponents x s have been derived ~22) by strip 
numerical calculations and using conformal invariance: 

x s = hL + 1,1 = L(3L + 2)/8 (6.7) 

Inserting these values and the bulk exponents xL of (5.23) into (6.5) and 
using the topological relations (6.1), one finds the exact formula (6.3). 

In d dimensions, I first derive the general formula (6.6) by another 
method, devising a direct renormalization for polymer networks near a 
surface. Then I calculate the x s surface exponents to O(~), by considering 
simple star polymers near a surface. One finds 

s L xL=-~d+ x'L s (6.8) 

where Ld/2 is the Brownian value, and x~ s is the anomalous part generated 
by self-avoidance in d=  4 -  ~ dimensions, 

rS xL = ~  L(L - 2) + 0(~ :) (6.9) 

Note that in two dimensions the anomalous part is exactly, from (6.7), 

3 
x'LS= x S -  L=-~ L ( L -  2) (6.10) 

exhibiting an (exact) quadratic form strikingly similar to the 0(8) result! 
[-See ref. 11 for the discussion of a similar resemblance between O(e) and 
exact 2D results in the bulk.] The value (6.8), (6.9), together with the bulk 
result 

L e 
xL =~- ( d -  2) +~  L(L - 1) (6.11) 

give the complete 7s surface exponent (6.6) to first order in e. 
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Let us now derive the O(e) results (6.8), (6.9) by a direct method. For 
this we first need to analyze the Brownian behavior of a network near a 
surface. 

6.2. B r o w n i a n  N e t w o r k s  

6.2.1. S ingle  Chain near a Sur face .  To build the partition 
function of "phantom" Brownian networks near a surface, one first requires 
that of a single Brownian chain. We consider a d-dimensional half-space in 
the presence of a d -  1 hypersurface, the position of a point being labeled 
by (r, z), with r ~ ~d-1 and z > 0 as the distance to the hyperplane. Then 
the Brownian partition function of a chain with fixed extremities at r, z and 
r', z' (Fig. 13) is defined as the functional integral 

GS(r, z, r', z ' ) = f  d+{r} cSa-l(rll(0)-r) 

• 3a-l(r l l (s)--r ' )  6(z(O)--z) 6(z(S)-z') P0{r} 

• ( f  d{r} Po{r} c~d[r(O)]) 1 (6.12) 

where r(s) is the complete configuration in d space of the chain 

r(s) = (rll(s), z(s)) 
and where Po is the pure Brownian weight: 

1 s r~(s)+~2(s)]} Po{r} =exp {-  ~f ~ as 

In (6.12) the measure for functional integration is 

f d+{r}=f~_ld{r,l} fz>od{z}exp[ - fSoql'z's))ds ] 

Ez 

Fig. 13. Labeling of the positions of the extremities of a single chain near a (d- 1)-dimen- 
sional wall. 
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where ~// measures the potential of the surface, and where the con- 
figurations are restricted to the z > 0  half-space, the interaction being 
infinitely repulsive for z < 0. 

It is now well known ~67'23) that for long chains the effect of the surface 
interaction can be modeled by a single surface contact parameter c such 
that the correlator (6.12) obeys the boundary condition 

OGSc~z z=o =cGs[z=~ (6.13) 

The value of c depends on 0# near the boundary. I describe here the 
repelling case, i.e., the ordinary surface transition (23) where the chain 
cannot touch the surface. It happens, for instance, for a potential ~//which 
is + c~ for z < 0 and 0 for z > 0, with no (sufficiently) attractive part near 
z = 0. This corresponds to the limit c--* +0% and to a Dirichlet boundary 
condition (68,23) 

GoSlz=0orz,=o=0 (6.14) 

[ c = 0  corresponds to a Neumann boundary condition, and is the 
Brownian value of c for the special transition where a (Brownian) chain 
just adsorbs]. This Brownian correlator (6.12) is well known (see, in 
particular, L6pine and Caill6 (68)) and reads in the Dirichlet case 

1 , 2 7 
aS(r, z, r', z') = (2rcS) -d/2 exp - ~ ( r - r )  J 

x { e x p [ _  1 ,2  3 1  ,zz,jex [ 
satisfying (6.14). The minus sign between the two image terms in (6.15) is 
characteristic of Dirichlet boundary conditions. For Neumann ones the 
correlator is simply the symmetric one 

s E 1 1 GNeumann(r, Z, r ,  z ' )  = (2r~S)-d/2 exp - ~ - ~  ( r  - r ' )  2 

x { e x p I - l ( z - z ' ) Z ] + e x p I - ~ ( z + z ' ) 2 1 }  

Note also that when one of the extremities goes far away from the inter- 
face, z ~ oe or z' ~ oe, (6.12) recovers the bulk partition (2.22), (2.23), the 
second image term dropping away. 
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In the case (6.15) of the ordinary surface transition the following 
integration formula will be useful: 

f :~o(Z, S)  = dz' d e -  lr' G0S(r, z, r', z') 

= 2(2~zS)-1/2 fo dx e-:'~/2s (6.16) 

and represents the total (normalized) partition function of a chain with one 
extremity fixed at (r, z). In agreement with the normalization by the bulk 
Brownian partition function chosen in (6.12), we see that far away from the 
surface 

~o(Z ~ ~ ,  S ) =  1 

while when the extremity of the chain approaches the surface, it vanishes 
like 

~o(Z ~ 0, S) ~ 2(21rS) - m  z (6.17) 

due to the strong repulsion of the surface. So we cannot define directly the 
partition function of a chain attached by one extremity to the surface. A 
good way to define a similar quantity is to consider the normal derivative 

0 GoS(r, z, r', z') 
( ~ Z  = 0 

2z' 1 1 z,2) 
=--~- (2~rS)-a/2 exp I - ~-~ (r - r ')2] exp ( -  ~- ~ (6.18) 

/ 

which stays finite at the surface. (A similar trick is used in the 
field-theoretic study of the ordinary surface transition, where the surface 
field vanishes, while its normal derivative does not. (56'59)) 

We so define a total Brownian partition function for a chain upon 
contact to the interface 

O• = d d 'r' dz' G S ( r , z , r ' , z  ') 

= ~z ~o(Z, s )  z=o 

which replaces (6.16). It is readily calculated from (6.17) 

~e~(S) = ~• ~o(S) = 2(2gS) ,/2 

(6.19) 

(6.20) 
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and is one (differential) Brownian partition function of a chain 
approaching a "Dirichlet" surface. Note that according to this definition 
the 71 "magnetic" surface exponent (22'23's8 60.64) such that 

is in the Brownian case 

~ l ( s ) - a ~ ( s ) ~ s ~  ' 

~ = 1/2 (6.21) 

If we want the usual 71~ exponent governing the partition function of a 
single chain attached by the two extremities to the wall, we simply differen- 
tiate (6.18) with respect to the other extremity z' at z ' =  0 and define 

~ll(S)~---(~A_) 2 ~o ~ f d d 'r' ~--~- ~--~-G s 
~Z ~ Z  0 z=O,z'=0 

since 

we find 

c~ c3 GS z= 2(27tS)-a/2 exp I 1 ] ~z'Oz O,z,=O = S  - ~-~ ( r -  r ') 2 (6.22) 

2 
~"~ 1BI(S) = ~ ( 2 ~ 8 ) -  1/2 

such that 

7~1 = - 1/2 (6.23) 

Note that (6.21) and (6.23) satisfy, as they must, Barber's scaling law (69) 

271 - 711 = 7 + v (6.24) 

since in the Brownian case 7 = 1, v = 1/2. 

6.2.2. Surface Contact  of Several Chains. Let us now con- 
sider a network of Brownian chains approaching the surface, and, more 
particularly, a watermelon network ~ (Fig. 12). All the chains, being 
Brownian, are independent, and since their individual partition functions 
all vanish when approaching the surface as in (6.17), we have to differen- 
tiate L times for each extremity in order to get a finite partition function. 
So we define the surface watermelon partition function 

x- - . , ,  GS( r, 0, r', 0) (6.25) 
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Using the Brownian expression (6.22) yields immediately 

~ s - ( s )  = [(2/S)(2rcS) d/2]L (2~S/L)(d-1)/2 (6.26) 

with a configuration surface exponent 

sB 1 - - � 8 9 1 8 9  ~ - = (6.27) 

For  L = 1, we recover (6.23). 
We can also consider the Brownian partition function of a star 

polymer, attached to the surface by its L-arm core (Fig. 14). We define it as 

~?~;. (S) = d d- Xr' dz' • 
=0 

- [ Z r l . ( S ) ]  L 

and find from (6.20) 

~S, Bs~L= [2(2~S)-V2]L 

such that the surface 7 exponent (6.2) reads 

7 ~ -  1 = - L / 2  

GoS(r, O, r', z ' ) ]  L 

(6.28) 

(6.29) 

(6.30) 

Below I derive a general surface hyperscaling law which embodies Barber's. 
It reads, in the presence of excluded volume, 

s 2ys~ L - 7sL = L 7 + v + (L -- 1 ) ( v d -  1 ) (6.31) 

and thus relates the exponents of the L-star attached to a surface and of the 
L watermelon (Fig. 14). For L = 1, we just recover the famous identity 

Fig. 14. 

- = 

The generalization of Barber's surface scaling law 2 7 1 - 7 1 1 = ~ + v  for L = I  to 
L-arm star polymers, L > 1. 
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(6.24). The Brownian values (6.27), (6.30) of course satisfy (6.31) for 
v = 1 / 2 , 7 = 1 .  

6.2.3. Corre lator  of a Brownian Surface Waterme lon .  It is 
also instructive to calculate the field-theoretic correlator (6.4) of the 
polydisperse watermelon network near a surface (Fig. 12) in the Brownian 
case. We define in general by analogy to the bulk correlator (2.36) 

L 
GS( X - Y ,  T ) = f 7  l-[ dSa e -T (&+ ' +SL)~eSL(x--Y; Sl'"" SL)  (6.32) 

~ o  a = l  

where the watermelon is now polydisperse with lengths $1 ..... So, and tied 
to the wall at X and Y. In the Brownian case, the polydisperse partition 
function ~ s  L reads, in complete analogy to (6.25), 

s,B . isl 0 ~3 Gs(X,0, Y, 0;Sa) & ..... & ) =  
a = i  

2 c 1 ( X -  y ) 2 ]  
= ik[ ~_7 (2rcS~) a/2 exp [ -  ~ 1  

3 a = l  = 

(6.33) 

Hence the critical correlator is, at the Brownian critical temperature T c = 0, 

Gs'B(X - Y, Tc = 0) = l-(2rt) -a/2 21 +d/2F(d/2)] L IX - YI-ca (6.34) 

It is of the expected form (6.4), with a Brownian critical scaling dimension 
(6.8), 

x s,B = Ld/2  (6.35) 

It is now easy to generalize the above findings to any Brownian network 
near a Dirichlet surface. 

6.2.4. Surface Scaling of a Brownian Network .  We have 
seen in Section 2.3, Eq. (2.15), that a monodisperse Brownian network in 
the bulk has an exact partition function 

~eB(f#) = (2~S)-Z~a/2 (det C~/{~}) J/2 (6.36) 

where s is the number (2.13) of independent loops of f#. 
If we fix now the positions Ri of all the vertices i = 1 ..... ~ in bulk 

space as in (2.3), we are certain to have a reduced partition function of the 
scaling form 

~ u { f ~ ,  Ri ,  i =  1 ..... .trB} = (2rrS) -~a/2  ( , ' ,  1)a/2 

x ~ { ( R ~ - R z ) S  -~/2, i=2 ..... % }  (6.37) 
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in such a way that the total partition function (6.36) is recovered as the 
~/fB-1 d-dimensional space integral (2.2), (2.3) (the origin i =  1 of the 
network being always fixed) 

~V- B 

= f I~ daR, y,B{fr R,} (6.38) ~B(f#) 
i - - 2  

Suppose now that we place the same (Brownian) network in the presence 
of the surface, with vertices i =  1,..., ~B at positions Ri=  (rll/, zi). Then, the 
translational invariance being broken, the partition function (6.37) is 
generalized to 

y,B{•, rlli' zi } = (2~S)-~ed/2 (~,-1)a/2 ~.{( r l l /_ r l l l  ) S 1/2, z i S - m }  

What happens now if we let some of the vertices of fr approach the surface? 
Let us denote by j =  1 ..... ~s these surface vertices chosen among the total 

bulk vertices in such a way that 

% = ~ + ~ s  
with ~U vertices staying in the bulk as in (6.1). Let L; be the number of legs 
of the surface vertex j, and let zj ~ 0 be its position near the plane wall. We 
have seen in Eq. (6.17) that each Brownian chain constituting an L-vertex 
contributes a vanishing factor z to the partition function in direct space. So 
we expect for a Brownian network approaching the wall an asymptotic 
behavior 

~ s  

~Z~s(f#, zj, j = 1,..., ~s) "~ 1-[ (zj) Lj (6.39) 
j - - 1  

since each L-chain vertex gives a factor z L. In order to define a finite sur- 
face partition function as in (6.19), we need to differentiate with respect to 
each of the positions zj, Lj times. More precisely [as we actually did in 
(6.25), (6.28)], we differentiate with respect to each of the Lj chains of a 
vertex j separately, as if they were independent, and then let them all go to 
zj = 0 together. This requires a total number of differentiations 

~ s  

L~s = # contact differentiations = ~ L j =  ~ nStL (6.40) 
j = l  L>~I  

where n s is the number of L-vertices onto the surface. ~s is thus the total 
number of  extremities of  polymer lines upon contact to the surface. 

We now define the surface partition function as 

63A_ ~.~"s'13(cff, rjii, zi,  i =  1,..., V;  riij, j =  1 ..... ~s) 

=- I-I ~13((fl, rtli ' zi; r l l j  ' zj) (6.41) 
j=l \~z j /  Izj=o 
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Next we integrate over all the d-dimensional positions of the ~f bulk ver- 
tices of type L >/1 [Eq. (6.1)] and over the ( d -  1)-dimensional positions of 
V s -  1 surface vertices: 

fo~I f ~sl ~.qes, B(cff)=f dd-lrlli dzi ~I dd-lrllJo• ~s'B((~,''') (6.42) 
i = 1  i = 1  j = l  

So, with respect to the bulk partition function (6.36), (6.38) we have a 
reduction of the number of space integration variables which is one per sur- 
face vertex, and thus in total ~ s -  1, i.e., the total number of vertices on the 
surface minus one, which is always kept fixed for eliminating translational 
invariance. Also taking into account the normal derivatives (6.40), (6.41), 
each reducing the length dimension by 1, i.e., giving a factor S-1/2, we find 
the surface Brownian scaling behavior 

~ S , B ( ~ )  ,'~ sTS'B(cff) - 1 

(6.43) 
ys, ,(f#)_ 1 = - S Y d / 2 -  ~ n S L / 2 -  (~s - 1)/2 

L~>I 

which replaces the bulk behavior. S is still the total number of indepen- 
dent constitutive loops (6.1). 

We are now in a position to study the direct renormalization of 
surface operators in the presence of excluded volume. 

6.3. Direct  Renormal izat ion at a Surface 

6.3.1. Dimensional  Analysis. We consider now the full problem 
of polymer networks in the presence of a inpenetrable wall, and with 
excluded volume as in (2.1). More specifically, here we consider the 
ordinary surface transition, i.e., Dirichlet boundary conditions (6.14). The 
Brownian analysis above, which led to Eq. (6.43), was a purely dimensional 
one. So we can assert directly that in the presence of excluded volume b, 
with a dimensionless interaction parameter z [Eq. (2.5)], the surface 
partition function will necessarily be of the form 

~s(f#) = (2ns)-d~/2-  es/2-{~-s- x)/2 zS(f#, z, d) (6.44) 

where Z s is a dimensionless surface partition function depending on z only 
(and d). This holds true in dimensional regularization, and the arguments 
for obtaining (6.44) are similar to those of Sections 2.2 and 2.3 which led 
from the Brownian result ~B(f9) to the general formula (2.14) in the 
presence of excluded volume. 
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6.3.2. Partition Function of Surface Stars. We proceed now 
as in Section 3.2. First make a hyperscaling factorization as in Eq. (3.13) 
and rewrite (6.44) as 

~s(~)=(2~R2/d) ~a~+~s+*-s-1)/2ZS(fC, z,d) (6.45) 

where the true swollen size R2/d [-Eq. (3.3)3 of a chain with excluded 
volume replaces the bare Brownian value S [Eq. (3.2)]. The new vertex 
part Z s is of course related trivially to Z s by 

Zff(cff) = [ f o ( Z ,  d ) ] ( d ~  + ~s+ ~-s 1)/2 z S ( q j )  (6.46) 

This is not enough to renormalize the network partition function (6.44), 
and we have to factorize out, as in Eq. (3.17), the contributions of all the 
nLL-star vertices in the bulk for any L/> 1, and also the new divergences 
brought in by the nScL-star vertices onto the surface, and this for any L >~ 1. 
So we first consider a simple L-star grafted onto the surface by its core 
(Fig. 15). It has an L-leg vertex grafted onto the surface, and L one-leg 
vertices floating in the bulk, and no loops; hence, 

= 0, ~s = L, ~s = 1 (6.47) 

Hence, according to (6.44), (6.45), its surface partition function scales like 

~s(sPL) = (2nS)-c/2 z S ( ~ ,  z, d) (6.48) 

= (2nR2/d)-L/2 ZS(SpL ' z, d) (6.49) 

We choose now to rewrite Z s by factorizing out the contributions of the L 
single extremities floating in the bulk, as in Eq. (3.15): 

Z ,  (SfL,s z, d) --- ZS(z, d ) [L r (~ ) ]  L/2 (6.50) 

o-S 
L 

0" 1 

0" 1 

Fig. 15. Depiction of the scaling law (6.58), yS c -  1 = a s + L a  I - -  v L ,  giving the L-arm star 
surface configuration exponent, a s is the irreducible contribution of the L-leg surface vertex. 
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Hence, the new irreducible surface partition function 2 s of an L-vertex is 
explicitly defined by 

ZS(z, d)= (2rcR2/d) I42 ~es(5#L)E~e(~)]-L/2 (6.51) 

or, in terms of the dimensionless partition functions (6.46) and (3.16), 

ZS(z, d) = [5~0(z, d)] L/z zs(5:L, z, d)[Zl(Z, d)] -L (6.52) 

So, we see the scaling idea clearly involved in (6.51); one first factorizes out 
the hyperscaling dependence (6.45) of the surface star ~r and then the 
contributions of the L free bulk ends, so one finally reaches the irreducible 
surface contribution 2. s of the L-vertex. 

All these manipulations were only formal up to now, and are just a 
matter of definitions, based on intuition. Now the heart of the matter will 
come from the next general renormalization statement, valid for any 
network grafted onto the surface. 

6.3.3. Renormalization by Surface Stars. Let us consider 
now the most general network ~ with n L L-leg vertices, L ~> 1, floating in 
the bulk, and n s similar ones in mobile contact along the surface. We can 
always factorize it as [see (6.45) and (3.17)] 

~r = [2gSX0(z ' d ) ] - (a~  + es+ ~s-1)/2 I-[ [ZL(Z' d)]nL 
L~>I 

x I~ [ZS( z, d)] n~' ~ s ( ~ ,  z, d) (6.53) 
L~>I 

where we have singled out the hyperscaling law (6.45), the irreducible con- 
tributions (3.15) of the L-leg vertices in the bulk, and those [(6.51), (6.52)] 
of the surface L-leg vertices of the network. This is just a definition of the 
dimensionless function s~ s. Note also that we can rewrite (6.53) more 
explicitly [use (3.15), (6.51), and (6.40)] in terms of the full star partition 
functions 

y ,s (~)  = (2xR2/d)-~a~ + ,:s-1>/2 I~ [~r y , -L/2(~)] ,L  
L>~I 

x 1-[ [Y's(5:L) Y' -L/2(~)]  "s ~ s ( ~ )  (6.54) 

[Note that the factor (2~R2/d)-es/2 cancels out in this latter formulation, 
but here ~es(5:L), (6.49), is dimensionaL] 

The important statement, as in Section 3.2, is that the factorization 
(6.53), (6.54) renormalizes correctly any surface network ~, namely now 
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s~'s(N, z, d) reaches a finite fixed point limit for very long chains when 
Z ---~ OO, 

d s ( ~ ,  z, d) z~ ~ ' s t*s (~ ,  0% d) < 0o (6.55) 

In terms of the e expansion, this means that d s ( N ,  z, d), once expressed in 
terms of the renormalized g of (3.10) or zR of (3.12) instead of z, has a 
double Taylor series expansion in powers of g or z R, and e, regular when 
e ~ 0, and this to all orders in g or zR: 

ds(f# ,  z, d) = d s [ ~ ,  g, d] = scs~fq, zR, d~ 

singular in 1/5 regular regular 

with a fixed point limit 

d s (  z --* ~ d = 4 -  ~) = d S [ g * ,  ~ ] = d s  Iz*R,e~ 

Again, this statement is not trivial, and would require a whole proof to all 
orders, going deep into the renormalization theory. However, one can be 
confident that it holds actually true to all orders. For a single chain grafted 
onto the surface by one or two extremities, it can be shown easily to be 
completely equivalent to the usual field-theoretic approach, (56'59) following, 
e.g., the method of ref. 35. A second argument is that the scaling laws 
derived from it in two dimensions, where the basic surface scaling dimen- 
sions are known exactly, (22) have been excellently checked numerically for 
various configurations of networks grafted onto a surface, or in a wedge, 
by Colby et al. (66) 

Let us now derive from (6.53), (6.54) the surface 7 s exponents 
of the network, and in particular show how scaling relations like (6.31) 
generalizing Barber's, (6.24), are readily obtained. 

6.3.4.  Bas i c  S u r f a c e  E x p o n e n t s .  Let us consider first a star 
polymer grafted onto a surface as in Fig. 15 by the L-leg core. We expect its 
partition function to scale like [see (6.2)] 

~q s (SeL) ,-~ #Lss~S-1 (6.56) 

where in dimensional regularization #-= 1, and where vs is the star surface 
exponent. If we consider instead the proper irreducible vertex function as 
defined in (6.51), it scales for z large like 

ZS(z ,  d) z~ ~ ) AS(e)  z(2/~) us~ S~ (6.57) 

where As(a) is a calculable amplitude, and where the a s are new surface 
critical exponents, characteristic of the ordinary surface transition, 

822/54/3-4-6 
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depending only on the number L of lines approaching the surface, and 
generalizing the similar bulk exponents aL, (3.30). We can immediately 
relate this surface dimension a s to the full vs r exponent (6.56) of the surface 
star through (6.51), which readily implies 

,syL_ 1 = a S + L a l _ v L  

o r  

a s = v L + 7  s -  1 - � 8 9  1) (6.58) 

So we see that asL is essentially related to vs r, and the use of a s is a matter 
of combinatorial convenience, a s being related to the surface critical 
phenomena only, and being thought to embody the irreducible surface 
divergence associated with an L-leg polymer vertex. Note that for L = 1, we 
have 

~s_--71 

where ~ is the usual magnetic surface exponent (here for the n = 0  field 
theory) and thus (6.58) reads 

a s = v/2 + ~, - 7/2 - 1/2 (6.59) 

Now, we insert the scaling behaviors (3.5), (3.30), and (6.57) into (6.53) 
and find 

~ s ( ~ )  z~oo ~ [ 2rcSAo(e) z(2v-l)2/~]-('tu'+es+~'-s-1)/2 

• [ I  I-AL(~) z~L~z/~)] "~ 
L~>I 

x 1-I [AS(e) z~S(2/~)] "~ ~r (6.60) 
L>~I 

In terms of S, this gives simply 

rILC~L) OlJ~ ~1- ~S-b Y/-S-- I ) + 2 L > ~ I  (~LO'L + $ S 
,,,~, ~,27 J 

so that 

S S 7 S - l = - v ( d s 1 7 6  ~ ( n L a L + n L a c )  (6.61) 
L>~I 

If we use instead of (6.53) the equivalent scaling equation (6.54) and use 
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the star bulk and surface scaling behaviors (3.29) and (6.56), we readily 
find 

~ - 1 = - v ( d ~  + ~ - 1 )  

+ 2 n~ ~ - 1 - g ( ~ - 1 )  +n~ ~S- l -g (~ - l )  
L~>I 

(6.62) 
which of course is completely equivalent to (6.61), due to (3.31) and (6.58). 

We can finally rewrite 7 s in (6.61) in terms of the bulk and surface 
vertex contributions by replacing ~o !~s, and ~s by their topological 
expressions (6.1) and (6.40). We find 

~-1=-vd+v+ ~ (nL~L+n~) 
L>~I 

where, as in Eq. (3.34bis,ter) 

d 
AL=~rc-v-~(L-  2) 

=~-1-?-(~-1)-v (L-Z) 

(6.63) 

and for the new surface contributions 

A s = a s - v d  ( L - 2 ) - v ( L  + 1) 

L d 
=7  s -  1 - ~  ( 7 -  1 ) - v ~  (L- -Z) - -v  (6.64) 

6.3.5. Various Hyperscal ing Relations. We see that according 
to the general vertex structure (22) of the surface exponent 7 s in (6.61), 
(6.62), we can express it for any network either in terms of the irreducible 
vertex contributions (6.61), or in terms of the more standard exponents of 
the stars ~'L in the bulk, of the surface stars 7s, and of v. In particular, 
(6.62) shows that any 7s can be expressed in terms of the basic exponents 
{v, 7c, TS, L>~l}. (Recall that for L = I ,  ~ ) L = l ~ 2  in the bulk, and 

S 7c= 1 ---71 in standard notations.) Of course, a vertex decomposition law like 
(6.61), (6.62) generates infinities of (hyper)scaling relations between 
exponents. This yields infinities of generalizations of Barber's scaling law, 
the latter appearing as a consequence of the vertex formalism. Indeed, for a 
single chain attached to the surface by its two extremities, we have the 
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topological characteristics nL=0  , VL~>I, and nS=2,  n S ~ l = 0 ,  ~ = 0 ,  
~s = 2. Hence Eq. (6.62) gives 711 as 

711 - -  I = --V "1- 2 E 7 1  - -  1 - � 89  - 1 ) ]  

which is nothing but 271 - 711 = 7 + v, as expected. We can easily generalize 
this, for instance, to the case of an L-line watermelon grafted onto a surface 
by its two extremities (Fig. 12). Its topological characteristics are nL = 0, 
VL~> 1, nS=2,  nsCL,=0, 5 g = L - 1 ,  ~ s = 2 .  Hence, Eq. (6.62)gives 

E L l 7 S - l = - v [ d ( L - 1 ) + 1 3 + 2  7 s - 1 - ~ ( 7 - 1 )  

which can be rewritten as (with 7 s_= s 7~L) 

2 7 s , - y S i = L T + v + ( L -  1)(vd-  1) (6.65) 

and is the full generalization of Barber's, mentioned in Section 6.2 (Fig. 14). 
Two tasks remain to be done now. First, relate these surface exponents 

a s which "act" in the "size space" S of the chains to the surface exponents 
x s (6.4) in direct space; and, second, calculate them by renormalization 
theory. 

6.3.6. Relat ion to the  Sur face  Exponents  x s. We can check 
that the general scaling law (6.61) obtained for 7 s from direct renor- 
malization theory is identical to the result ~22) announced in (6.6) in terms 
of the exponents x s, (6.4). Identifying the general structure (6.4) and (6.61) 
[see also the topological relations (6.1)] leads immediately to the identity 

a s = -vxSc + ( vd -  1)L/2 + vL (6.66) 

We can check this identity by recalling that the XSL exponents (6.4) measure 
the algebraic critical decay along the surface of the correlations of the 
extremities of an infinite watermelon network of fluctuating lengths 
(Fig. 12) 

G s ( x -  Y, T~) = IX - YI 2x~ 

where G s is defined [Eq. (6.32)] by Laplace transform with respect to the 
total fluctuating length, and is a correlator in the associated O(n) field 
theory (n-o 0). Using the same equations as in Sections 2.6 and 3.6, it is 
easy to invert this Laplace transform slightly off criticality [see (2.43)] 

G~(X Y , T ) = I X  -~x ~ s - - Y [  ~FL( IX-YI  IT-T~[ v) 
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and calculate the polydisperse number of configurations [Eq. (2.38)] 

1 f + i ~  d d _ l y G s ( X _ Y , T )  
~'~SL' p ~  = ~ i  -- i o o + f f  

where now Y is integrated along the surface only. One finds therefore 

S, p o l y _ _ , , { , 4  1 - 2 x  s) ~/~L - -  v ~ . ~ - -  

and for the monodisperse case rEq. (2.39)] 

_ 1 = v i a l -  1 - 2 x  s )  - L 

Identifying this value with the result of Eq. (6.6l) for ~ ,  we just recover 
Eq. (6.66). QED. Note that it is also convenient to use the anomalous part 
x)~ s (6.8) of the correlation exponent x s generated by self-avoidance. We get 
an equivalent surface identity from (6.66), which we collect with its bulk 
analogue (3.53): 

a s = -vx 'L  s + (v - 1/2)L, surface 
(6.67) 

aL = - vx 'L  + (v - 1/2)L, bulk 

These basic identities give the relation between the "size space" vertex 
exponents aL, a s appearing in the general formulas (3.34), (6.61) for 7~, ? s 

' x)S and the pure anomalous scaling dimensions x c ,  of the bulk and surface 
vertex operators such that 

(~L(X) ~L(Y)> r,. = I X - Y I  (d--2)L--2x'L 

S S (4c(X)  ~c(Y)>r~ = I X - Y [  dL-2xis (6.68) 

Recall that - ( d - 2 ) L  and - a l l  are the Brownian exponents. Hence aL, 
a s, as well as x~_, x~ s are identically zero above f our  dimensions, and start at  
order e, in d =  4 -  e. They are generated by self-avoidance. 

6.4. Calculat ion of the Exponents 

In direct renormalization the easiest way is to calculate the surface 
configuration exponents of the L-stars s ?.~L, which will lead to the a s, in the 
same way as we calculated in Sections 3 and 5 the bulk exponents aL. We 
perform here this calculation to first order in e. 

6.4.1. Perturbat ion Expansion. The rules for calculating 
diagrams in the presence of a surface are the same as in Section 2.4 except 
for two important changes. 



650 Duplantier 

1. In the bulk, we took as a free propagator between two successive 
interaction points of the same chain in a diagram the Gaussian form (2.20) 
(in Fourier space) or in direct space 

( 6a(ra(s)-ra(S')-r) )o = (2rt ]s-s'[)-a/2 exp(-rZ/21s- s'l) (6.69) 

This bulk Gaussian probability distribution has to be replaced in the 
presence of a surface by the Brownian distribution G s of (6.12). For the 
present ordinary surface transition or Dirichlet boundary conditions we 
replace in the calculation of the diagrams (6.69) by (6.15): 

GS(r, z, r', z'; s - s ' )  

= (2rt Is - s ' l )  -d/2 exp 
/ 

(r - if)z] 
2 I s - s ' l  

1 
1 ( z - z ' ) 2 1 - e x p l  2 1 s  (Z"~Z')2]t X {exp [ 21s--s'-~l --s'[ 

(6.70) 

In general the best method would be to Fourier transform the part parallel 
to the surface (depending on r -  r' only) and use in the general calculation 
of diagrams a mixed Fourier-direct space representation, since the z com- 
ponents break the translational invariance. However, to first order, all 
calculations can be performed in direct space. 

2. As explained in detail above, for Dirichlet boundary conditions, 
we have to differentiate the Brownian Green functions upon contact at the 
surface, in order to define finite partition functions [Eqs. (6.18), (6.19), 
(6.25), (6.28)]. So when we calculate, for example, the diagrams con- 
tributing to an L-star partition function (Fig. 16), we take as a first 

--) 
Fig. 16. One-loop diagrams contributing to the star surface partition function ~s(sPL) , and 

parametrizing ~ and J .  
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propagator for any segment of length s joining the core on the surface to a 
first interaction point the propagator (6.18): 

c3 GS(0,0, r , z ; s  ) 2z(2rts) a/2exp I 1 ] ~z' ,, =o s ~s (rE + z2) (6.71) 

6.4.2. S u r f a c e  E x p o n e n t s  a t  O(e ) .  According to the theory 
described before, we only need to know the surface star partition ~ s ,  
characterizing an L-leg star attached by its core to the surface. The first- 
order diagrams contributing to it are given in Fig. 16, up to one loop. Let 
us denote by .3L and JL their contributions. When we take into account 
their multiplicity weights, we find for y,s 5eL 

1 ~s(seL) = ~eS'B(SeL) + L~SL + ~L(L  -- 1 ) JL  (6.72) 

The zeroth-order contribution is the Brownian value (6.28) for b = 0 

~s'B(Sec) = [2(2~zS)-1/2] L (6.73) 

According to the rules above, ,3L reads explicitly 

~.y.s.B = 312(2rcS)-1/2]L--1 (6.74) ~'~L ~-  "~J 5eL 1 

where ,3 is the contribution for one grafted chain only (Fig. 17a). In the 
same way, Jz. factorizes into 

_ r B = j [ 2 ( 2 ~ S )  1/2]L-2 (6.75) ~ f L - -  J 5eL-2  

where J is the contribution of the two-leg star grafted by its core 
(Fig. 17b). 

5 
V,z "~z' 7"z' 

a 

r ' ,  Z ' 
rl,z 

/ 
r2,z2 7"', z' [~ 

b 

Fig. 17. Pararnetrization of interaction integrals ~ and J occurring in (6.74), (6.75). 
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According to the diagrammatic rules above, the integral expression of 
,~ is formally (Fig. 17a) 

. 3 = - b f : d s f : d s ' f d d - ~ r f f  dz f da-~r' f :  dz' 

s( ' s)  x G O , z = O , r , z ,  

x GS(r ', z , r , z ,  . . . .  s ' - s )  GS(r ', z', r, z; S - s ' )  

Using the expressions (6.70), (6.71), we find explicitly 

;o~ f~ ; fo o , ~ = - b  ds ds' d a lr' dz'2Z'(2rcs) a/2e-(r'?/2Se (z')2/2s 
s 

x ( 1 - e  4(z')2/2(x' ~))[2rc(s'-s)] -a/2 

; fo ~ x dd- l r  dzGS(r ' , z ' , r , z ;S-s  ') 

The last integration over the free extremity (r, z) is performed with the help 
of the identity (6.16), while that on r' is trivial. So ~ reads finally 

fo f: f0 ~ 3 = - b  ds ds' dz' 

2z' • - -  (2gS) -1/2 e (~')2/2"[1 --e -4('-')2/2(s'-s)] 
S 

f/ x [2~z(s'--s)] -a/2 [ 2 g ( S - s ' ) ] - 1 / 2 2  d2"e (z")2/2(S-s') 

This integral, once dimensionally regularized, diverges when d = 4 - a ,  
e ~ 0. One can perform its asymptotic analysis and find 

3 = -2(2~S)-~/2 z [ - 2 / ~  + O(1)] (6.76) 

where the term O(1 ) is calculable and useful for calculating some universal 
amplitudes. (7~ Hence, from (6.74) 

2 
3L = [2(2~S) I/~]L z -  (6.77) 

e 

The partition function J for the grafted two-leg star (Fig. 17) is calculated 
in the same way. Its formal expression reads 
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• Nas(0 ,0 ,  Gs(o,O,r', ';sO 

f fo x d a l r  1 dzl GoS(r ', z ' ,  rl,Zl,S-sl)GS(r',z,r~,z2;S-s2)" ' _ 

Using the same trick as before I-Eq. (6.16)] to integrate over r 1, zl, r2, z2, 
and r', we find the simplified expression 

fo o~ r = (2g )  - ( d +  3)/2 2 4 ds l  ( S - s x )  -1/2 s F  a/2 .1  

X ds 2 ( S - $ 2 ) - I / 2 s 2  d/2-1 dz t ( z ' )  2 

;/, x d~ e -l~2/2(S-sl) d~' e (;')2/2(S--s2) 
~o 

x ( S l  I + s 2  l)  (d 1)/2e-(Z')2(s~t+s~l)/2 

The analysis of the divergences when d =  4 - e ,  e + 0, leads, after some 
calculations, to 

23 
J = - (2~S)  - t  z - -  (6.78) 

Inserting this into Eq. (6.75), we find 

2 
JL = - [2(2nS) -1/2] L z - (6.79) 

e 

Finally, we find for the star surface partition function (6.72) the simple 
expansion 

~s(sec)=  [ 2 ( 2 r c S ) 1 / 2 ] L [ 1 - z L ( L - 3 ) ~ ]  

= [ 2 ( 2 r c S ) - I / 2 ]  c zS(szL, z, d) (6.80) 

according to the definition (6.44). We only need now to renormalize this 
result. This is trivially done as in Section 3. We calculate the logarithmic 
derivative 
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S~-~ln zS(seL, z, d) 

e =g zNln zs(~L/ 

1 
- z L ( L  - 3) + . . . . . .  

2 

1 
g L ( L - 3 ) +  . . .  (6.81) 

2 

which must be to all orders a regular (for e --* 0) double series expansion of 
g and e. Substituting the fixed point value (3.11), we find asymptotically for 
d = 4 - e  

S_~__ in z s ( 5 ~ L ) - -  _ 1 ~ L ( L _ 3 ) + O ( e 2 )  
~S s ~  2 8 

and thus 
~.~eS(~L)~ [2 (2~S) -1 /2]  a S (e/16)L(L 3) 

Therefore, the star surface exponent 7so ~ 7~Ls defined in (6.56) reads at this 
order 

L e 
7s  L -  1 - 2 16 L ( L -  3) + O(e 2) (6.82) 

Note at this stage that the anomalous parts of the surface exponents 7sL 
and of the bulk exponents Ys~L of (5.17) for  star polymers are the same to 
order O(e). This does not hold true to the next orders. This means that the 
polar divergences of the surface diagrams of Fig. 16a are the same as those 
of the bulk diagrams of Fig. 7. So, in the vertex decomposition formula 
(6.62), the 7 s surface exponents could be replaced by the YL of stars in the 
bulk, up to terms of order O(e2). 

The vertex irreducible surface exponent a s is then calculated from 
(6.58) and (1.3) as 

a s = - - f ~  L ( L - -  3) + O(e 2) (6.83) 

and from this value, the x s and xk s exponents are easily derived 
FEqs. (6.67)] 

L 
+ ~ L ( L  - 2) + O(e 2) xL=d2S 

73 

xrS 8 a = ~  L ( L  - 2) + 0(~ 2) 

as announced in (6.9). 

(6.84) 
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From these values, one has access to any surface critical exponent of 
any network fr For  instance, the global alL, d s exponents (6.64) read at 
this order 

d 
d L = - -4  (L -- 2) + ]-~ (4 -- L 2) + O(e 2) 

(6.85) 
d L + I  e 

A s = - ~ (L - 2) - ~ + ~-~ (3 - L 2) + O(e 2) 

6.4.3.  Four Dimens ions .  The logarithmic terms correcting the 
Brownian behavior in d =  4 (4D) of ~s(seL) [Eq. (6.80)] can be calculated 
as in Section 3, by replacing g in (6.81) by its asymptotic form (3.45), 
g = 1/(4 In S) + .... Integrating back gives 

~176 d'~=4 [2(2rcS)-1/z]r (In S) -L(L-3)/8 
S~oo 

(6.86) 

Again, this is similar to the exact d = 4  asymptotic behavior of the star 
partition function in the bulk (since, as is well known, the dominant d =  4 
log terms are given by one-loop divergences). 

Indeed, the general formula (3.47) gave for bulk star polymers in 4D 

~(~L)  d='~4 (INS) L(L-3)/8 (6.87) 
S~oo 

So the only change in the surface behavior is the occurrence of an S -L/2 
factor, due to the Dirichlet boundary conditions, which required L contact 
differentiations for the L arms of the star core (Section 6.2.2). 

It is now interesting to find the exact scaling behavior in four dimen- 
sions for any network grafted onto a Dirichlet surface. For such a network 
f#, we use the basic multiplicative renormalization formula (6.54), in terms 
of the bulk and surface star partition functions, given in 4D in (6.86), 
(6.87). We need also the logarithmic behaviors in 4D (43) in the bulk 
[Eqs. (3.43)] 

R 2 ~ S(ln S) 1/4, ~ ( ~ )  ~ (In S) ~/4 (6.88) 

and on the surface 

~es (~  ) ~ 2(27c8) -~/z (ln S) 1/4 

Now in (6.54), the amplitude ds(f#) ,  as in (3.18), has been tailored in such 
a way that 

d s  = zucs.B . . . .  i,, + O(g) = sr s'" + O(1/ln S) ( d =  4) (6.89) 
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and thus ~,s also tends to a constant in 4D (its Brownian value). 
Collecting together (6.86)-(6.88) and using also the topological relations 
(6.1) yields after some calculations the new form of the multiplicative 
renormalization equation (6.54) in d =  4, 

~ s ( ~ )  d~4 (27rS)-/4~'+~s+~s 1~/2 
S ~ m  

X (In S) ~ . 1  {"~ + n s r ) ( 4  = L 2 ) / 8  - " g ' s / 8  - 3 / 8  (6.90) 

where ~ ,  ~s =S~L~>I nS L, ~s = ZL  >~ I nS L, are, respectively, the numbers of 
independent loops of if, of chain ends grafted onto the surface, and of 
vertices grafted onto the surface. Of course, in the above formula, we 
recognize in the first factor the Brownian value (6.43) at d = 4 .  

6.5. Corollaries 

From the above results we can derive some other interesting quan- 
tities. 

6.5.1. A Remarkable Identity.  Consider the two-leg surface 
vertices. From (6.84), we observe that the anomalous part of x s, namely x;  s 
vanishes to order e: 

x~ s = 0 (6.91) 

The same is true for the exact two-dimensional formula (6.10) derived from 
conformal invariance (22) 

x2 s = 3 x ;  s -~ L ( L  - 2), - 0 ( d =  2) (6.9 lbis) 

Actually, this identity (6.91) holds true to all orders in e, and is valid in any 
dimension. It is indeed the translation in polymer physics, namely in the 
O(n = 0 )  field theory, of a result of Diehl eta/. (57) for the ordinary surface 
transition. 

They showed that the anomalous dimension of the normal derivative of 
the field at the Dirichlet boundary 0 ~ ~b = 0z ~b[ z = o vanishes to all orders in ~. 
Consequently, the crossover exponent ~/,o governing the effect of a surface 
energy term c Ssurfaco ~ b2 was shown to be ~ o =  - v  to all orders. Here, in 
polymer theory, x;  s is just the anomalous dimension of the two-leg vertex 
in contact with the surface and corresponds in surface magnetism precisely 
to the operator (O.~b) 2. So (6.91) is just the same vanishing theorem, valid 
to all orders in e, also exact in two dimensions, and in fact in any dimen- 
sion d. 
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The related exponents xS2, as ,  As [Eqs. (6.8), (6.68), (6.64)] are thus 

x s = d =-- ~2YS'Br~ 

a s = 2v - 1 (ordinary surface transition) (6.92) 

zls= - v - 1  

We can derive from this the interesting values of the 7 exponents of  some 
networks near a surface when they involve only two-leg vertices on the 
surface (Fig. 18). We have the following for the networks of Fig. 18. 

Single Loop Attached to the Surface. r / L = 0  , VL~>I, n S =  1, 
nS, e 2 = 0 .  Using, e.g., Eq. (6.63), we find from (6.92) 

~Soop = - v r  

Two-Leg  Star A t tached  by Its Core. 
for L = 2 and (6.92) give the identity 

7 s 2 = 7 -  1 

(6.93) 

nl = 2 ,  n S =  1. Equat ion (6.58) 

(6.94) 

Two-Leg  Watermelon. n L = 0 ,  VL/> 1, n s = 2. Equat ion (6.63), e.g., 
gives 

7 s  = - v d -  v - 1 (6.95) 

Linear Frieze. J g  chains are tied as a collar onto  the surface 
(Fig. 18). Hence the topological  characteristics are LP = 0, s s = 2~Ar, ~s = 
j I r  + I, n s = 2, n s = Y -  1, and thus 

~ f r i e z e  - -  1 = - v 3 Y  + 2a s + (Jf" - 1) a s 

~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ' ~  

(5 
~ \ \ \ \ \ \ ~ \ \ \ \ \ \ \ \ ' ~  ~ ~ \ \ ~ \ \ \ \ \ \ \ \ \ \ \ \ \ " ~  

Fig. 18. Networks involving only two leg-stars grafted onto the surface (i.e., surface energy 
operators in field theory) and whose configuration exponent 7r162 depends only On 7, v, and d, 
and for the linear frieze also on '21. 
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We recall that for a single chain attached by both extremities, in our 
formalism [see (6.64)] 

711 - 1 --= y s  _ 1 = - 3 v  + 2~ s 

which is also the above equation for Y = 1. Hence, combining the latter 
two equations and using (6.92) gives 

s _ X ( v +  I) 
~) f r i e ze  - -  ~ ) l l  ~ -  ]J - -  

-- 271 - 7 - .Ar(v + 1) (6.96) 

Circular Frieze. We can also consider a surface circular frieze 
obtained by gluing together the two free extremities of the above linear 
frieze. Then we have simply n s = Y ,  and 

S 
7 circular = 1 -- vd + v + ~ A  s 

f r i e ze  

= 1 - v d + v - Y ( v +  1) (6.97) 

As it must, for Y = 1 we recover the loop result (6.93), and for J V = 2  the 
L =  2 watermelon result (6.95). 

6.5.2. Proximal Exponents. From the knowledge of the 7 s 
exponents, one can derive that of the proximal exponents which govern the 
probability that a network approaches the surface. More precisely, one 
considers a particular L-leg vertex i belonging to a given network f# and 
defines the relative probability that it stays at a distance z from the surface, 

~,(z) 
~L(z) = ~  (6.98) ~(oo) 

where ~e~(z) is the total partition function of the network, with the 
particular L-leg vertex i f ixed at a distance z from the wall, ~.e(z = co) 
corresponding to be same partition function at infinity, namely in the bulk. 
A priori, ~e(z)  should depend also on the surroundings of the considered 
vertex in the network, i.e., on which L-leg vertex we choose to fix at z. 
However, when the vertex comes close to the surface, only the fact that it 
has L legs will matter, exactly as in the case of the local contacts inside a 
polymer network, the contact exponent 0(L} [Eqs. (1.7), (5.32)] depended 
only on the vertices upon contact. This is the reason for the subscript L 
in ~L. 

Since NL(Z) is dimensionless by its very definition (6.98), it will 
depend, in the asymptotic limit of strong excluded volume, only on the 
ratio z/R, where the size [see (3.1)] R--, S v of the swollen chain (e.g., in the 
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bulk) is the natural length scale of the associated critical system. Now, 
when the distance to the surface goes to zero, i.e., for z/R ~0,  ~L is 
expected to scale like 

~L(z) ~Zo (z/R)r (6.99) 

where ~c is a new critical exponent, the proximal or depletion exponent. It 
is a contact exponent to the surface and signals a depletion effect. As said 
above, this exponent depends only on L, the number of legs of the polymer 
vertex approaching the surface, and not at all on the network it is embed- 
ded in. To derive it, we simply use the same scaling argument ~ )  as for the 
contact exponents in Section 5.4. We fix z at a "lattice spacing" a, say, of 
the surface and let the size R ~ S ~ of the chain be very large. So from (6.99) 
we expect ~c to scale like ~ L ~  S ~ ,  while from (6.98), we expect it to 
scale like 

(6.100) 

where y,s is now the surface partition function of the new network (r 
grafted onto the surface by the considered L-leg vertex and only by this one. 
Equation (6.100) implies therefore 

1 S 
~L=~ ( 7 ~ - ~ , )  (6.101) 

Suppose now that the numbers of L'-leg vertices of (r were {nL, } in the 
bulk and {nS,=0} on the surface. Once ~ '  is grafted onto the surface by 
one L-leg vertex, one has the new primed values 

! ~ ! tS  nL,~L nl:r nL=nr--1, nc ,~L=0 ,  n~S=l  
(6.102) 

V '  = Y/~ -- 1, YF 's = 1 

In this problem, the most convenient formalism for expressing the bulk and 
surface exponents 7~, and 7 s, will be that in terms of the dimensions xL 
[Eqs. (4.14bis), (4.14ter)] and of the xL x s [Eq. (6.6)]. We therefore have 
in the bulk 

, ~ - l = v l d ( " f f - 1 ) -  ~ nc, xL.]--JV 
L ' ~ I  

and once fr is grafted onto the surface by one L-leg vertex 

L ' > ~ I  
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Using (6.102) gives identically 

.S - -  v t  x S  ? ~ - Y ~ ' =  t L--XL) 

Hence, this value does not depend on ~, but only on L. We could have 
obtained it much more easily by only considering the approach o f  the core 
of  a simple L-leg star to the surface. The corresponding proximal exponent 
reads, finally, 

(L = xS -- XL (6.103) 

which is a formula very similar to that for contact exponents (5.32). Both 
are actually simple operator product expansion formulas. 

Recall that in d = 4 - e  dimensions we found [Eqs. (5.20), (6.84), 
(6.9)] 

L 
X L = ~ ( d - 2 ) + - ~ L ( L -  1)+O(a 2) 

L 
x~ = ~ d+  g L ( L  - 2) + o(~ 2) 

Hence 

~L = L(1 - e/8) + O(e 2) (6.104) 

Note that for e = 0 we recover well the Brownian value (~ = L. In this case, 
the probability N~(z) of (6.98) for an L-leg Brownian star is just the 
partition function (6.17) raised to the Lth  power. Hence, near the surface 

N~(z) ~ o  [2 z L 

in agreement with (6.104). 
In two dimensions we know the exact values of the scaling dimensions 

XL~ XSL : 

XL = (9L 2 -- 4)/48, x s = L(3L + 2)/8 

Hence the proximal exponents are exactly (22) 

(L = (3L + 2)2/48 (dilute, 2D) (6.105) 

The other critical phase in two dimensions, namely the dense polymer 
phaset13)--corresponds to the low-temperature phase of the associated 
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critical O(n) model ( n ~ 0 ) .  The exact dense exponents are, in two 
dimensions,(13'18'20) 

x~=(L2--4) /16,  x ~ , S = L ( L - 2 ) / 8  

Hence the proximal exponents are in this case 

~L = (L - 2)2/16 (dense, 2D) (6.106) 

For  L = 2, we remark that ~z = 0. So there is no repulsion from the surface 
line acting onto the two-leg vertices, which are nothing but the interior 
monomers of the chains. This is entirely satisfactory since the polymer 
phase is dense and fills the box with a finite density <13) and can even fill 
completely the lattice (2~ (Hamiltonian walks), with density one. So the 
dense polymers also fill the neighborhood of the surface and one expects a 
no depletion regime in the dense phase. The depletion which would occur in 
the dilute case due to the repelling of the boundary chains by the wall is 
counterbalanced here by the bulk dense monomers repelling the boundary 
ones. 

7. POLYMER NETWORKS AT THE THETA POINT 

7.1. Tricrit ical  Model  

Finally, one can generalize the above scaling theory to networks in a 
O-solvent. Since this paper is already long, I shall mainly concentrate on 
the results. The O point in a polymer is experimentally defined as the 
temperature where the second virial coefficient of (infinite) chains 
vanishes. (71n4'2) From a theoretical point of view, (2"24'25"72) it can be 
modeled by a continuum Edwards model (25) with three-body interactions 

~{r} = e x p ( - ~ 4 { r  }1 

w{r}=gfo <ds] 
 ff[ + ~. ds ds' ds" 6d[r(s)-r(s ' )]  6d[r(s ' )-r(s")]  (7.1) 

This weight for one chain is easily generalized to a set of J< chains as in 
(2.1). The dimensionless expansion parameters are, (2s) for the two- and 
three-body forces, by trivial dimensional analysis of (7.1) 

z : ( 2 7 z ) - a / 2  b S 2 - a n  ' y=(2r t ) -d  cS 3 d (7.2) 
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So we see that for d > 3 ,  the three-body forces are irrelevant in the 
long-chain limit. For d ~< 3 they are relevant. Thus d = 3 is upper tricritical 
dimension. One can then show, (73) that in dimensional regularization, the 
theta point corresponds exactly to the vanishing of the two-body parameter 
b = 0, i.e., z = 0. For  simplicity, I shall work here exactly at this O point, 
which is a tricritical point. (24'72) By the same direct renormalization 
method, which I shall describe here, one could also calculate ~25) tricritical 
deviations from the O point, which are experimentally observableJ 74) 
Before proceeding further into the theory of networks, let us recall briefly 
what is known about single polymer chains at the O point. 

Since d =  3 is the upper tricritical dimension, logarithmic corrections 
to the Brownian behavior appear in d = 3. The squared end-to-end distance 
and the single-chain partition function then read, ~z5'75} exactly at the O 
point, in three dimensions, 

37 
R2=3SAo(y)[1 3(ll)2--~n(S/so) ] (3D) 

~~ A~(y) [1-4( ll )~419(S/so)I (3D) 

where Ao, An are regular functions of y, starting for y small as 

16 5 Ao(y)=l+-~zcy+O(y2), Al(y)=l+--~rcy+O(y 2) 

(7.3) 

So is the short-range cutoff, So ~ S, necessary in 3D. Note also that in 3D, 
y =  (2rc)-3c no longer depends on the chain size. The results (7.3) are 
long-chain asymptotic results, valid for y ln(S/so) >> 1. For  short chains, the 
simple results of perturbation expansion are (73) (in dimensional 
regularization) and at first order 

R2= 3S(1-4rcy) (3D) 
(7.4) 

Y~(~) = 1 - 4rty (3D) 

[At next order, terms y2 In S/so appear. Hence, i fy  In S/so ~ 1, then (7.4) is 
valid; and if y in S/so >> 1, renormalization calculations (72'2s) lead to (7.3).] 

It is worth noting that in 3D, the logarithmic corrections are 
asymptotically vanishing in R 2 and ~ ( ~ )  [-see (7.3)], and are thus very 
difficult to test numerically. (v6) This is quite different from the case of a 
polymer in a good 4-dimensional solvent, where multiplicative (ln S) ~/4 fac- 
tors appear in R 2 [Eq. (3.43)] and ~ ( ~ )  [Eq. (3.47)]. These corrections 
in 4D have been well checked numericallyJ 77) In the case of 3D 
O-polymers, only a weak logarithmic singularity predicted (2"72) for the 
specific heat has been searched for in numerical simulations. (76) 
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As we shall see, for networks at the O point, the situation is much 
more favorable. As soon as 3-leg vertices appear in a network, they will 
induce multiplicative logarithmic correction terms which could be detected 
numerically. 

Below 3D, new tricritical exponents appear, and it is a present 
challenge to determine their exact values in two dimensions. (26) The 
exponents v, 7, and r have been calculated for d =  3-/;t,(78,25) 

mE 4 " ] v=g '3) 

5 ~) : 1 " t - ( - ~  ~t2 _~_ O(~t3) (7.5) 

1 3d r 

Note that the correction terms in v and ~ start only at order e2. This, of 
course, is related to the appearance of only additive 1/ln S correction terms 
in 3D in R 2 and ~f(~) .  As is very well known, and was seen in Section 3.5, 
for the 4D good solvent, the existence of multiplicative logarithmic factors 
at an upper critical dimension dc is equivalent to that of O(e) terms in the 
associated critical exponent for d =  d e - e .  

Now I shall give the renormalization and scaling theory of polymer 
networks at the O point. As mentioned above, I obtain interesting 
tricritical first-order effects, which are much stronger than those previously 
known (7.3), and were unsuspected in the literature. Note that a theory 
similar to this one for polymers has been already proposed (28) for 
describing the mutual three-by-three intersection properties of random 
walks. There I described the scaling theory of nets of walks which had to 
cross at some prescribed vertices and, in between, were not allowed to have 
any three-walk crossings. Here we shall just have to add the self- and 
two-chain interactions induced by three-body terms. 

7.2. Perturbation Expansion 

At the theta point, all quantities are calculated from weight (7.1) taken 
at b = 0, and reading for S chains 

1 ~, (S.2 
= Jo ra(s) ds ~ % { r a }  2 a = l  

ds 
a=l  a '=l  a"=l  

x 3d[ra,(s') - ra,,(s")] 

~S 
ds' jodS " ~a[r~(s) 

(7.6) 



664 Duplantier 

We shall be interested here in calculating, within this formalism, any 
polymer partition function Lr ~ of a network fr of the type (2.2). For this 
we shall first need perturbative rules and then a renormalization theory. 
Both will be very similar to those explained in Sections 2 and 3. 

The perturbation expansion of any partition function ~o(f#)  is perfor- 
med in powers of c, and more precisely of the dimensionless y [-Eq. (7.2)]. 
The same dimensional analysis starting from the Brownian value of ~eB(fr 
for c = 0 yields the general form of the tricritical partition function ~o(f#), 

~o(f~) = (2~zS)-a~12 zO(~, y, d) (7.7) 

where now Z ~ depends on y (and d) only. As usual, ~25) we work in 
d = 3 - e' dimensions, e' > 0. When e' ~ 0, poles appear in the perturbation 
expansion of ~eo(f#, y, d) in powers of y, and have to be renormalized. 

This perturbation expansion is obtained in a way completely similar to 
that described in Section 2.4 for two-body interactions. The only difference 
is that now interactions c are represented by dotted lines joining three 
interaction points, which belong to one or several chains. Let us consider 
the simplest objects, namely the tricritical star partition functions ~e~ 
Their expansion to first order in c is given in Fig. 19. Apart from the 
appearance of three-point interaction dotted lines, the rules for calculating 
diagrams are exactly the same as in Section 2.4. 

Since there is no constitutive loop in the star, 50 = 0, and ~~ [see 
(7.7)] is dimensionless. It reads, according to Fig. 19, 

~ ~  3 3 3 + "  (7.8) 

where ~-o ;51.2,3 are the individual contributions of the diagrams of Fig. 19. 
They read, respectively, according to the rules of Section 2.4 and after 
momentum integrations 

3 f = - c ( 2 n )  -a d s d s ' O ( S - s - s ' l ( S - s - s ' ) s  d/Zs'-a/2 

Fig. 19. Expansion to first order in the three-body interaction c of the star partition function 
~~ at the O point. 
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32~ --- - c (2~)  -a  d s d s ' O ( S - s - s ' ) s  a/2 ds,,(s,+s,,)-a/2 

3~ ~So dS fSo dS' fSds" (ss' + s's" + s"s)-d/2 

It is not difficult to calculate the analytic continuation of the first two 
integrals in d dimensions and see that they are regular at d =  3 when e' ~ 0. 
Hence, the only diverging integral at this level is ~o 33, which behaves as 

3 ~  -y(Zzc/e'+ ...), e ' = 3 - d ~ 0  (7.9) 

So the Taylor-Laurent  expansion of ~O(5~L) in powers of y and e is 
simply, to first order in y, 

~ o ( ~ )  _- 1 - y  ~- 

Of course, for L =  1, 2, we set, by convention, in (7.8) (~)=0 .  So we see 
that for L = 1 or L = 2, which both correspond to a single-chain partition 
function, there is no divergence to first order. In particular, we have from 
(7.8) 

~ o ( ~ )  1 ~ o  --- +~5~ = 1 - 4 ~ y  (3D) 

in agreement with (7.4). The renormalized correction terms 1/ln S of (7.3) 
or, equivalently, the O(e 2) terms in 7 [see (7.5)] will come only at next 
order O(y 2) (see refs. 25 and 72 for precise calculations). Let us now 
proceed to the direct renormalization of the star partition function (7.10). 

7.3. Tricritical Direct Renormalization 

7.3.1.  P r i n c i p l e s .  The principles of this direct renormalization of 
the Edwards model at the tricritical O point have been given in ref. 25. 
Their equivalence to the field-theoretic renormalization of the (D 60(n)  
model was shown in ref. 79. When renormalizing off the O point for z # 0 
some subtleties appears. (25) But, exactly at z = 0 ,  the renormalization is 
quite simple and very similar to that described in Section 3.1 for the good 
solvent case. We need essentially the end-to-end distance (at O) 

R 2 = f g ( y ,  d) dS (7.11 ) 

where the swelling factor has the Taylor-Laurent  expansion <25) 

~Oo(y,d)=l_4rcy + y 2  ~, 186+-~ + ... (7.12) 
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The single-chain partition function reads similarly 
g2 

~e~ = 1 - 47zy + y2 7;- 186 + -.. (7.13) 

The effective renormalized theory will be expressed in terms of the renor- 
realized three-body interaction h, instead of y. It is defined as (25) 

~ ( ~  • ~ x 5fl1 {2~R 2"] -d 
h = \ - - 7 - ]  

where ~e (~  x ~ x ~ )  is the connected partition function of three indepen- 
dent chains. Its Taylor-Laurent  expansion in powers of y and e' can be 
calculated by diagrams and reads 

h = y - y2 . . . .  44 = + (7.14) 

For the O point, h plays the role of the parameter g above. It will reach a 
fixed point value for d = 3 - d, when S ~ 0% and tends logarithmically to 
zero when d =  3. These behaviors are obtained immediately from the 
Wilson function 

W(y,e')=W[h,e']=S-~h=e'y h 

It reads, from (7.14), 

W[h, e'] = e'h - 447th 2 + O ( h  3) (7.15) 

and is regular to all orders in h, when d -+  0. The nontrivial fixed point is 
thus, for d = 3 - e', 

h*(e') = 7 7  + O(d2) (7.16) 
,u 

while for d =  3, e '=  0, (7.15) is integrated to 

1 
h = t- (7.17) 

44rt In S/so 
The effective scaling behavior of diverging partition functions like (7.12), 
(7.13), or (7.10) is obtained by introducing scaling functions like 

~ro(y, e')= ao[ h, e'] = S ~ In y.O(y, d ) = ~ ' y  In y.O(y, ~') 
0,3 uy 

or  

2al(y,  e') = 2al[h,  e'] = e'y ~ In ~~ ) 
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These scaling functions, once expressed in terms of h substituted to y, 
become regular to all orders in h, when e'--* 0. For  d =  3 -  e', their fixed 
point values a0[h*, e'] and 2al[h*,  e'] give the tricritical exponents 2 v -  1 
and 7 -  1. 

For e ' = 0 ,  one substitutes (7.17) in the above scaling functions and 
integrates back with respect to S. After some careful calculations, one 
finds ~25) the known results (7.3). 

7.3.2.  O-Star Polymers.  Let us now apply the same formalism to 
the star partition function (7.10). This is very easy: we define a scaling 
function 

7L(Y, e')-- l -- S f~ln ~~ y~yln Z ~ 

Hence, in terms of h, 

7L[h,e ']- l=-2~z(3) h+O(h2) (7.18) 

Hence, the fixed point value (7.16) gives below 3D the tricritical 7-star 
exponent 

1 ,S' 
7~ ~  1 = - g  L ( L -  1 ) ( L -  2) ~ + O(~ '2) (7.19) 

In exactly 3D, we find by substituting (7.17) in (7.18) the differential 
equation 

S In ~~ = -- 22 In S 

which is trivially integrated into the exact result 

Y~ ~ (In S) -L~L - 1)(L-- 2)/6 x 2 2  (7.20) 

This formula is (asymptotically) exact in 3D. We see that for L >/3, non- 
trivial logarithmic factors appear, which would be very interesting to test 
numerically. We are now in a position to calculate the behavior of any O 
polymer network after having renormalized it. 



668 Duplantier 

7.4. Renormal izat ion of e - N e t w o r k s  

7.4.1. Star Factorizat ion,  Consider a network N in a bulk 
O-solvent with nL L-leg vertices, L >~ 1. Exactly at the O point, its partition 
function reads as in (7.7). We choose to factorize it over its vertices, and 
write, exactly as in Eq. (3.18) in the good solvent case, 

~e~ = (27zR2/d) dNa/2 U [-~PO(cgOL) ~O(~I)--L/2]nL d~O(N' y' d) 

L>~I (7.21) 

where A ~ is a dimensionless amplitude, a function only of y and d (for 
d < 3 ) ,  and having a Taylor-Laurent  series expansion in powers of y, 
e '=  3 -  d. The crucial statement of tricritical direct renormalization (79) is 
then that d ~ reaches a finite fixed point limit when S ~ o% or y --* oe in 
d = 3 - ~ ' :  

d ~  y ~ ~ ,  d) = d~  d) < oe 

More precisely, the substitution of the renormalized third virial coefficient 
h of (7.14) to y transforms d ~  h, d] into a double Taylor series expan- 
sion of h and e', regular when e' ~ 0, to all orders in h: 

d ~  y, d) - d ~  h, d] 

singular regular 

For d <  3, one has of course the fixed point limit 

d ~ , d ~  h*] y ~  

For d =  3, d ~  d =  3] is a regular series of h ~ 1/ln S [Eq. (7.17)] 

d ~  h, d =  3] = riB(N, d =  3) + O(h) (7.22) 

starting as the Brownian value of d ,  with calculable corrections. 
For  d < 3, we define a set of independent tricritical exponents a ~ such 

that 

o~O(~L)[ -~ taO(~l )  ] L/2 I, y( 1/~)~~ ~ S ~~ (7.23) 
~oo 

and from (7.21) we find as usual the basic hyperscaling relation 

o,~O(N ) ~ S yO - -  1 ( S  ~ 0o ) 

O __vO 7 e - l =  dL~+ ~ nLa ~ (7.24) 
L>~I 

which generalizes Eq. (3.34) at the O point and in any dimension d <  3. 
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The value of a f  is immediately found to first order in e' = 3 - d from 
(7.19), 

L ~o=~o_ 1-~ (~o_ 1) 

1 L ( L - 1 ) ( L -  2) ,2 (7.25) - - g  55+o(  ) 

In three dimensions, the problem is exactly solvable. Indeed, we plug 
results (7.3), (7.20), and (7.22) into (7.21), and find 

~eo(c~, d =  3) sU~ S 3~~ S) IEL~>~ nLL(L 1)(L--2)/132 (7.26) 

which is asymptotically exact. This completes our study of networks in a 
B-solvent. 

7.4.2. Two Dimensions. In another work, (26) exact values have 
been proposed for the exponents of the O point in two dimensions. The 
critical exponents were those of the O(n = 1) model in its critical low-tem- 
perature phase, or, equivalently, (26"2~176 of the Q =  1 Potts model at its 
critical point. The model proposed was a model of self-avoiding walks on 
the hexagonal lattice, in the presence of random forbidden hexagons, with 
annealed randomness. At the percolation threshold of the hexagons (which 
is the site percolation of their centers on the triangular dual lattice, at 
Pc. = 1/2), the sudden restriction of the space available to the SAW leads to 
its collapse. Note that the O point is frequently defined as the point where 
nearest-neighbor (nn) attractive two-body interactions just counterbalance 
the excluded-volume effects. In the percolation forbidden hexagon model, 
the collapse is driven by the annealed impurities. There is some discussion 
at present (81-83) about the universality class of this transition and about its 
equivalence to the "standard" O point. It is interesting, to remark that it is 
possible to show this equivalence in dimension d > 2 ,  (84) but new 
instabilities appear in 2D and several " 8  points" could be possible there. 

In any case, the above annealed disorder model has been solved 
exactly in 2D by Coulomb-gas techniques, and the critical exponents are at 
the collapse transition in the bulk(26): 

x ~ = (L z - 1)/12 (7.27) 

and read in terms of the Kac table (4.17) x ~ = 2hL, L for m = 2. The surface 
exponents, valid for the collapse transition near a Dirichlet surface 
(ordinary transition), are also known, (26) 

x S ~  ( m = 2 )  (7.28) 
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The former scaling theory above applied integrally to this special two- 
dimensional O polymer system. The usual exponents v and 7 and crossover 
exponent ~b are (26) 

v - 1 = 2 - x 2 ,  7=  ( 2 - 2 x l ) v  

~ = v / v ' ,  v ' - 1 = 2 - x 4  
(7.29) 

giving 

v = 4/7, 7 = 8/7, v' = 4/3, ~b = 3/7 (7.30) 

These values have been studied numerically for the obstacle model on 
strips (26) and in the usual model of a B-solvent with attractive nn inter- 
actions by Monte Carlo methods. (8~'81) 

We can now consider a two-dimensional B-network (8 in the sense of 
the annealed obstacle model). Then, the irreducible cr ~ exponents are 
deduced from the scaling x ~ by the usual scaling rules (3.53), which apply 
universally, 

a ~ = - v x  ~ + (v  - 1/2)L 

= - ( 2 L  + 1 ) ( L -  2)/42 (7.31) 

Similarly, for surface exponents [Eq. (6.66) in d =  2] 

a s ~  = - v x  s ~  + (v  - 1/2)L 

= (31L -- 4L2)/42 (7.32) 

The 7 ~ exponent of a network under O conditions is then found from the 
equivalent equations (7.24) or (4.15), and near a surface from Eq. (6.6) 
generalized to the O point. Using the above exact values gives explicitly (26) 

o 8 1 
7 ~ - l = - f f + ~ - ~  ~ n z ( 2 - L ) ( 2 L + 2 5 )  

L ~ > I  

(7.33) 

and 

4 1 
S O  _ _ _  7~ - 1 =  7+~-~ ~ [ n L ( 2 - L ) ( 2 L + 2 5 ) + n S ( 2 4 - 4 L 2 - 1 7 L ) ]  (7.34) 

L ~ > I  

Finally, the proximal surface exponents (L ~ of (6.103) read at the O point 

( o  _- ~L"SO - -  ~L" 0 _-- ( L -  1)2/12 (7.35) 
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8. EXACT EXPONENTS IN TWO DIMENSIONS.  COMPARISON 
TO NUMERICAL ESTIMATES 

I have given a general hyperscaling theory, valid in any dimension, 
which predicts the critical exponents for any geometry of polymer networks 
in terms of a basic set of exponents (aL or xL) associated with the L-leg 
vertices floating in the bulk solvent or in terms of exponents o-s, x s in the 
case of the surface (ordinary) transition. Such a theory was originally 
imagined by observing that the renormalization of any polymer network 
could be performed in terms of the L-vertex operators appearing in an 
L-watermelon, as described in Section 3. Then the general hyperscaling 
theory was exploited extensively in two dimensions in refs. 11, 13, 18, 22, 
and 26, and to O(e 2) in d = 4 - e  for the intersections of networks of 
random walks/28) It is worth noting that there is up to now no rigorous 
proof of the validity of this generalized hyperscaling theory to all orders in 
renormalization theory. 

I stress that here and in refs. 1 and 28 use was made of direct renor- 
malization theory, where polymer partition functions are calculated direc- 
tly. Now, the polymer theory, including vertices of higher order, can be 
identically transformed into a field theory, where L-leg vertices correspond 
essentially to insertions of composite operators q~L. Such a transformation 
was performed here for the basic watermelon network (Sections 3.6 and 4) 
and it was actually at the root of all our studies in two dimensions, where 
the O(n) model formulation was used intensively (see, in particular, 
refs. 13, 17, and 20). Then, knowing this equivalence polymer-O(n) model, 
the direct renormalization method for simple linear polymer chains 
originally devised by des Cloizeaux in the good solvent case ~5) can be 
shown to be completely equivalent to the renormalization of the usual 
(q~2)2 theory(34,35.44) (for n = 0) and can be extended to O-solvents. (79) For 
highly branched polymers, one would have to consider (in polymer as well 
as in field theory) the full renormalization of composite operators. In field 
theory it is known in principle ~15) but quite complicated because of the 
possible mixing of many operators. 

My statement is that it can be understood from a basic series of 
anomalous dimensions xL (or o-L), corresponding to irreducible scaling 
operators. This is easily seen in polymer theory, but works also in any O(n) 
theory, as seen in two dimensions/2~ It is also a quite natural idea in the 
framework of two-dimensional conformal invarianceJ 13,17,2~ 

Having established these scaling relations, I feel it useful to convince 
the reader of their validity by comparing the predictions to numerical 
estimates. The best test is of course in two dimensions, where all exact 
values are known, and where good series and Monte Carlo numerical 
results are available. 
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Furthermore, the exact results in 2D should not be thought to be 
derived only from conformal invariance. More precisely, only the  values of 
the watermelon critical exponents x L or x s are found in the conformal 
table. All other geometrical exponents are derived from the multiplicative 
renormalization (3.18) over vertices, equivalent to the scaling theory of 
Section 4. 

Let us briefly recall the exact 2D exponents. 
First, one needs to know the scaling laws giving the y~ exponents. 

They are, in the bulk, (~) (4.14) 

y ~ = v [ d ( ~ / / ' - l )  - ~ n L x L ] - - ( J V - 1 )  
L>~I 

and near a Dirichlet surface (22) (6.6) 

s E ss ]  ~ - v c l ~  + ( e l -  1 ) ( ~  - 1) - ~ (nLxL  + n ~ x L )  -- ( ~  -- 1) 
L>~I 

In d = 2 ,  one has the Nienhuis' value v=  3/4. (16) Recall that the x r ,  x s 
exponents (2.40) and (6.4) are q-like exponents of the critical correlation 
functions (2.36) and (6.4) of the peculiar watermelon network. In 2D they 
belong to the conformal Kac table (4.17). ~45) In the bulk good solvent case, 
their exact values, (4.18), 

XL = (9L 2 -- 4)/48 (8.1) 

were originally conjectured ~12) from numerical simulations followed by 
identifications to the Kac table of central charge c = 0. ~27) So these values 
can be considered from the start as well checked numerically. Furthermore, 
they can be derived in the Coulomb-gas formalism, and are exact beyond 
all doubt. In a similar way the surface exponents in 2D, x s = L(3L + 2)/8, 
were originally found from numerical simulations on strips, ~z2) and, again, 
identification in the c = 0 Kac table, with x s = hL+ 1,1. 

The associated exponents aL or AL [-(3.53), (3.54)] are thus, in 2D, 

1 1 
crc = ~--~ (2 - L)(9L + 2), AL = ~-~ (2-- L)(9L + 50) (8.2) 

The configuration exponent of a general network N, (3.34bis), is then 

1 1 
= ~ n L ( 2 -  L)(9L + 50) (8.3) 
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In particular, for stars in the bulk, one finds (1~ 

7s~L = 1 + [4 + 9L(3 - L)] /64 (8.4) 

The first values are especially interesting, since series enumerations were 
performed independently for them(63): they are 

43 17 1 
YJ1 = ~ 2 -  ~' 32 '  7s~ = i-6 ' 3)S~4 = 2 ' 

11 47 
7 s ~ -  32 '  7s~6= 3 2 " "  

Also, the H-network exponent will 
n I = 4, n 3 -----2. Its value is 

(8.5) 

be interesting, (86) corresponding to 

7~ = 25/32 (8.6) 

As explained above, all contact exponents can be calculated. In particular, 
the well-known exponents 01, 02 are (~1) 

01 = 5/6, 02 = 19/12 (8.7) 

The "limiting ring closure probability" exponent (5.27) governing the 
probability P ~ S -  rl of forming a tadpole ~52'53) is then (11) 

/~1 = (2 + 01)v = 17 /8  (8 .8 )  

It will also be very interesting to check the general surface exponents. The 
basic surface scaling dimensions x s, (6.4), are in 2D ~22) in terms of the Kac 
formula (4.17) for m = 2 

XSL = hL+ 1,1 = (3L + 2)L/8 (8.9) 

or in the "chain size space" [Eq. (6.66)] 

as  = L  ( - 9 L  + 26) (8.9bis) 

The total vertex contributions AS L, (6.64), are then 

1 
A s = -~-~ (9L 2 + 22L - 24) (8.9ter) 
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As a result, the general surface exponent 7s of any grafted network 
reads (22) [Eq. (6.63)] 

s 1 1 
7e=~+~-~  ~ n L ( 2 - L ) ( 9 L + 5 0 ) -  ~ n S ( 9 L 2 + 2 2 L - 2 4 )  (8.10) 

L>~I L>~I 

Particular cases are the usual magnetic surface exponents 72 and ~11, which 
correspond to n s = 1, n I = 1 (71), and n s = 2  (711). Their values are 

~1 =61/64, '~11 = --3/16 (8.11) 

in agreement with Cardy, (6~ Guttmann and Torrie, (87) and Barber's law. 
Polymers grafted in a wedge also present very interesting 

effects. (65'8v'22) One expects indeed new scaling dimensions, depending on 
the wedge angle c~. (88) In two dimensions, the conformal mapping 
w(z) = z '~/~ transforms the wedge e into a surface line and by conformal 
invariance one easily shows ~27'22) that the anomalous scaling dimensions of 
surface operators ~b s, (6.4), become in the wedge 

xW(~) =-~ x ~, (8.12) 

Originally, a single chain grafted inside a wedge by one of its extremities 
was considered. Cardy and Redner/6s) and Guttmann and Torrie (87) 
independently found the wedge-dependent exponent 

91 15 
7i(e) = (8.13) 

64 32 

and the formula for a single chain grafted at one end into the wedge and at 
the other on the surface was also guessed numerically, (87) 

9 15 
~1 (e )=32  32 ~ (8.14) 

Note that, as expected for c~=rt, one recovers ?t(rc)=?l and ?~,~(rc)=?~ 1. 
In ref. 22, this was completely generalized to any network ~, one L-vertex 
of which is grafted inside the wedge of angle ~, while other {no} bulk 
L-vertices float in the solvent, and {n s } surface L-vertices are grafted along 
the surfaces. The wedge corresponding configuration exponent is then 
simply related to the surface exponent (z2) by 

w ye (c~) = 7s(~) _ v(rc/c~ -- 1) x s (8.15) 
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where one recognizes the wedge contr ibut ion (8.12). The explicit value is 
t h e n  (22) 

~,w(c 0 - 1 = - 1- s  3.  ~- s 1 6 3  + 2) 
2 3zc~ 

+ ~ [lnL(2-L)(gL+50)-lns(gLz+22L-24)] 
L ~ I  

(8.16) 

F o r / 2  = ~ and n 1 = 1 or  n s = 1 one recovers (8.13) or (8.14). 
Some simple geometries have been analyzed by series enumerat ion by 

Colby eta/. (66) for checking the exact 2D surface and wedge predictions 

(8.10), (8.16) (Fig. 20). 
Let us consider an L-star  grafted by its core on the surface or  in a 

wedge (nl = L ,  n S =  1 or n I = L ,  n S = 0 ,  /2 = L ) .  Then 

7 s = 1 + L ( 1 5 -  18L)/64 (8.17) 

7 s = 61/64, 7 s = 11/32, 73 s = - 5 3 / 6 4  .... 

7w(c0 - 1 = 27L/64 - 3~L(3L + 2)/32e (8.18) 

W --  S Of course, for ~ = ~, YL (~) ----- 7L" 
Also of  numerical interest (66) will be the L-star  tied to the surface by 

M a r m s  (22) 

7L~M = 29/16 + 9L(3 -- L)/64 - 73M/64 (8.19) 

For  L = 3 ,  M =  1, 73,~ =43/64.  

a b c 

Fig. 20. Stars in wedge or surface geometries, with exponents (a)?W(~), (b)ys(n),  and 
(c) 7sl. 



676 Duplantier 

Table I. Comparison of Exact 2D Predictions (8.5)- (8.8) ,  
(8.11), (8.18), and (8.19) with Values Found Numerically 

L-S ta r s  Exac t  N u m e r i c a l  

73 17/16 = 1.0625 (1) 

"~4 1/2 (1) 

V5 - 11/32 = - 0 . 3 4 3 7 5  I~) 

76 - 4 7 / 3 2  = - 1 . 4 6 8 7 5  (1) 

H - C o m b  

y ~  25/32 = 0.78125 ~1) 

/ : =  (2 + Ox)v 17/8 = 2.125 m)  

C o n t a c t  e x p o n e n t s  

01 

1.07 ___ 0.02 (63) 

0.52 + 0.04 (63) 

- -0 .29  +_. 0.04 (631 

- 1.33 + 0.05163) 

0.79 + 0.02 (86) 

2.13 _+0.01 (52) 

2 .10_+0.10 (s3) 

2.15 _+ 0.30 - 0.15 (53) 

5/6 = 0.8333... (11) 0.84 + 0.01 (52) 

0 .84_+0.13 (53) 

0 z 19/12 = 1.5833... ( m  1.93 __. 0.27 (89) 

Surface  a n d  wedge  

e x p o n e n t s  
71 61/64  = 0.9531... 16~ 0.945 _+ 0.005 (64) 

0.956 + 0.014 (9o) - 0.006 
7w(Tt/2) - 3 7 / 3 2  = -1.15625122) - 1.15 _+ 0.05 (66) 

7w(2~/3)  - 13/32 = - 0 . 4 0 6 2 5  (z2) - -  0.4 _+_ 0.05 (66) 

7w(~)  11/32 = 0.34375 (22) 0.35 _+ 0.05 (66) 

7s(rc) - 53/64 = - 0 . 8 2 8  (22) - 0 . 8 2  _+ 0 . 0 5  (66) 

ys 1(re ) 43 /64  = 0.671 (22) 0 . 6 8  -.t- 0.05 (66) 

Table I collects the exact 2D predictions (8.5)-(8.8), (8.11), (8.18), and 
(8.19) with the values found numerically. The agreement is excellent. Slight 
discrepancies, such as in 75, 76, or 02, should not be taken too seriously, 
since according to the authors themselves, (63'89) the lengths of the chains 
were too short. This agreement fully confirms the validity of the above 
polymer network scaling theory, and also in two dimensions of the confor- 
mal invariance approach. 

9. CONCLUSION 

In conclusion, the scaling theory of uniform (and also of polydisperse) 
polymer networks of arbitrary topology is now known. The basic idea is 
that a polymer network can be decomposed onto its vertices, each of these 
generating its anomalous scaling dimension [Eqs. (1.11), (4.14), (6.6), 
(6.61), (6.63), (7.24)]. This applies to good and O-solvents, and in bulk 
and semi-infinite geometries. From this scaling theory, infinities of iden- 
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tities between critical exponents can be obtained by recomposing the same 
vertices to form other topological networks. Only denumerable sets of basic 
irreducible exponents exist for each physical situation, which are those of 
the L-leg polymer vertices, L ~> 1: eL for the bulk vertices, a s for surface 
ones (at the ordinary transition), ao at the O point. These exponents give 
the power law dependence of partition functions as functions of the length 
of the polymer. In field theory, they are in direct correspondence to q-like 
exponents xL, x s, xc ~ associated with the critical decay of the correlation 
function of L polymer lines of fluctuating lengths. All other geometrical 
exponents can be expressed in terms of the a's (or the x's). The values of 
the aL, ~r s, ~r ~ are known, respectively, to orders O(~2), O(e) in d=  4 -  
and O(e') in d=  3 -  e'. The corresponding logarithmic corrections in d=  4 
or d=  3 for the tricritical case have been given. In two dimensions, all 
geometrical exponents are known exactly, since conformal invariance and 
Coulomb-gas techniques give access to the exact xL, x s and then by the L~ 
scaling theory to any 7~, ys. The comparison of these predictions with 
existing numerical data in 2D is fairly good. It would be interesting to test 
also the exact tricritical logarithmic laws predicted by, e.g., Eq. (7.20) for 
stars in a O-solvent. Further progress could be made by extending without 
difficulty the present theory to networks adsorbed at a surface (i.e., at the 
special transition point). 

A technical study would also be necessary to derive the multiplicative 
renormalization of polymer vertices from the rigorous renormalization of 
composite operators of any order in field theory. Note also that my feeling 
is that the present renormalization over vertices is not specific to polymers, 
but works in the O(n) model. Multiply connected magnetic correlation 
functions could be studied there. In 2D, this already appeared in the O(n) 
model, in some exact applications to geometrical critical phenomena) 26) 

Note added. After this work was completed, I learned of a preprint 
by K. Ohno and K. Binder where the present scaling theory, originally 
given in refs. 1 and 22 and extended here, is rederived using a 
phenomenological scaling in the framework of the O(n) model (n = 0). The 
values of the e expansions of the exponents given there agree with ours. 
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